Department of Biology, University of Oxford, Oxford OX1 3SZ, UK.
Department of Biology, University of Oxford, Oxford OX1 3SZ, UK.
Curr Biol. 2024 Oct 7;34(19):4567-4576.e3. doi: 10.1016/j.cub.2024.08.016. Epub 2024 Sep 11.
Zoosporic fungi, also called chytrids, produce single-celled motile spores with flagellar swimming tails (zoospores). These fungi are key components of aquatic food webs, acting as pathogens, saprotrophs, and prey. Little is known about the swimming behavior of fungal zoospores, a crucial factor governing dispersal, biogeographical range, ecological function, and infection dynamics. Here, we track the swimming patterns of zoospores from 12 evolutionarily divergent species of zoosporic fungi from across seven orders of the Chytridiomycota and the Blastocladiomycota. We report two major swimming patterns that correlate with the cytoskeletal ultrastructure of these zoospores. Specifically, we show that species without major cytoplasmic tubulin components swim in a circular fashion, while species with prominent cytoplasmic tubulin structures swim in a pattern akin to a random walk (move-stop-redirect-move). We confirm cytoskeletal architecture by performing fluorescence confocal microscopy across all 12 species. We then treat representative species with variant swimming behaviors and cytoplasmic-cytoskeletal arrangements with tubulin-stabilizing (Taxol) and depolymerizing (nocodazole) pharmacological compounds. We observed that when treating the "random walk" species with nocodazole, their swimming behavior changed to a circular-swimming pattern. Confocal imaging of the nocodazole-treated zoospores demonstrates that these cells maintain flagellum tubulin structures but lack their characteristic cytoplasmic tubulin structures. Our data demonstrate that the capability of zoospores to perform "complex" random-walk movement is linked to the presence of prominent cytoplasmic tubulin structures and suggest a link between cytology, sensory systems, and swimming behavior in a diversity of zoosporic fungi.
游动孢子真菌,也称为壶菌,产生具有鞭毛游动尾巴(游动孢子)的单细胞运动孢子。这些真菌是水生食物网的关键组成部分,作为病原体、腐生生物和猎物发挥作用。游动孢子真菌的游动行为知之甚少,而游动行为是决定扩散、生物地理范围、生态功能和感染动态的关键因素。在这里,我们追踪了来自 Chytridiomycota 和 Blastocladiomycota 七个目 12 种进化上不同的游动孢子真菌的游动模式。我们报告了两种主要的游动模式,这些模式与这些游动孢子的细胞骨架超微结构相关。具体来说,我们表明没有主要细胞质微管成分的物种以圆形方式游动,而具有明显细胞质微管结构的物种则以类似于随机游动(移动-停止-重定向-移动)的模式游动。我们通过对所有 12 个物种进行荧光共焦显微镜观察来证实细胞骨架结构。然后,我们用微管稳定(紫杉醇)和微管解聚(诺考达唑)药理学化合物处理具有不同游动行为和细胞质-细胞骨架排列的代表性物种。我们观察到,用诺考达唑处理“随机游动”物种时,它们的游动行为会变为圆形游动模式。用诺考达唑处理的游动孢子的共焦成像表明,这些细胞保持着鞭毛微管结构,但缺乏其特征性的细胞质微管结构。我们的数据表明,游动孢子进行“复杂”随机游动的能力与显著的细胞质微管结构的存在有关,并暗示了在各种游动孢子真菌中细胞学、感觉系统和游动行为之间的联系。