Zhou Wei, Liu Yi-Chen, Liu Guang-Jian, Zhang Yuan, Feng Gai-Li, Xing Guo-Wen
College of Chemistry, Beijing Normal University, Beijing, 100875, China.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413350. doi: 10.1002/anie.202413350. Epub 2024 Oct 30.
Photocaging is an emerging protocol for precisely manipulating spatial and temporal behaviors over biological activity. However, the red/near-infrared light-triggered photolysis process of current photocage is largely singlet oxygen (O)-dependent and lack of compatibility with other reactive oxygen species (ROS)-activated techniques, which has proven to be the major bottleneck in achieving efficient and precise treatment. Herein, we reported a lactosylated photocage BT-LRC by covalently incorporating camptothecin (CPT) into hybrid BODIPY-TPE fluorophore via the superoxide anion radical (O ⋅)-cleavable thioketal bond for type I photodynamic therapy (PDT) and anticancer drug release. Amphiphilic BT-LRC could be self-assembled into aggregation-induced emission (AIE)-active nanoparticles (BT-LRCs) owing to the regulation of carbohydrate-carbohydrate interactions (CCIs) among neighboring lactose units in the nanoaggregates. BT-LRCs could simultaneously generate abundant O ⋅ through the aggregation modulated by lactose interactions, and DNA-damaging agent CPT was subsequently and effectively released. Notably, the type I PDT and CPT chemotherapy collaboratively amplified the therapeutic efficacy in HepG2 cells and tumor-bearing mice. Furthermore, the inherent AIE property of BT-LRCs endowed the photocaged prodrug with superior bioimaging capability, which provided a powerful tool for real-time tracking and finely tuning the PDT and photoactivated drug release behavior in tumor therapy.
光笼化是一种用于精确操纵生物活性的空间和时间行为的新兴技术。然而,目前光笼的红/近红外光触发光解过程在很大程度上依赖单线态氧(O),并且与其他活性氧(ROS)激活技术不兼容,这已被证明是实现高效精确治疗的主要瓶颈。在此,我们报道了一种乳糖基化光笼BT-LRC,它通过超氧阴离子自由基(O ⋅)可裂解的硫酮键将喜树碱(CPT)共价结合到混合BODIPY-TPE荧光团中,用于I型光动力疗法(PDT)和抗癌药物释放。由于纳米聚集体中相邻乳糖单元之间的碳水化合物-碳水化合物相互作用(CCI)的调节,两亲性BT-LRC可以自组装成具有聚集诱导发光(AIE)活性的纳米颗粒(BT-LRCs)。BT-LRCs可以通过乳糖相互作用调节的聚集同时产生大量O ⋅,随后有效地释放DNA损伤剂CPT。值得注意的是,I型PDT和CPT化疗协同增强了对HepG2细胞和荷瘤小鼠的治疗效果。此外,BT-LRCs固有的AIE特性赋予光笼前药优异的生物成像能力,为肿瘤治疗中实时跟踪和精细调节PDT及光活化药物释放行为提供了有力工具。