Aubreville Marc, Ganz Jonathan, Ammeling Jonas, Rosbach Emely, Gehrke Thomas, Scherzad Agmal, Hackenberg Stephan, Goncalves Miguel
Flensburg University of Applied Sciences, Flensburg, Germany.
Technische Hochschule Ingolstadt, Ingolstadt, Germany.
Eur Arch Otorhinolaryngol. 2025 Mar;282(3):1619-1629. doi: 10.1007/s00405-024-08947-9. Epub 2024 Sep 13.
Multidisciplinary tumor boards are meetings where a team of medical specialists, including medical oncologists, radiation oncologists, radiologists, surgeons, and pathologists, collaborate to determine the best treatment plan for cancer patients. While decision-making in this context is logistically and cost-intensive, it has a significant positive effect on overall cancer survival. METHODS : We evaluated the quality and accuracy of predictions by several large language models for recommending procedures by a Head and Neck Oncology tumor board, which we adapted for the task using parameter-efficient fine-tuning or in-context learning. Records were divided into two sets: n=229 used for training and n=100 records for validation of our approaches. Randomized, blinded, manual human expert classification was used to evaluate the different models. RESULTS : Treatment line congruence varied depending on the model, reaching up to 86%, with medically justifiable recommendations up to 98%. Parameter-efficient fine-tuning yielded better outcomes than in-context learning, and larger/commercial models tend to perform better.
Providing precise, medically justifiable procedural recommendations for complex oncology patients is feasible. Extending the data corpus to a larger patient cohort and incorporating the latest guidelines, assuming the model can handle sufficient context length, could result in more factual and guideline-aligned responses and is anticipated to enhance model performance. We, therefore, encourage further research in this direction to improve the efficacy and reliability of large language models as support in medical decision-making processes.
多学科肿瘤专家会诊是一个由包括医学肿瘤学家、放射肿瘤学家、放射科医生、外科医生和病理学家在内的医学专家团队合作,为癌症患者确定最佳治疗方案的会议。虽然在这种情况下进行决策在后勤和成本方面要求很高,但它对癌症患者的总体生存率有显著的积极影响。方法:我们评估了几种大语言模型在头颈部肿瘤学肿瘤专家会诊中推荐治疗方案的预测质量和准确性,我们通过参数高效微调或上下文学习对任务进行了调整。记录分为两组:n = 229条用于训练,n = 100条记录用于验证我们的方法。采用随机、盲法、人工专家分类来评估不同模型。结果:治疗方案的一致性因模型而异,最高可达86%,医学上合理的推荐率最高可达98%。参数高效微调比上下文学习产生了更好的结果,更大/商业化的模型往往表现更好。
为复杂的肿瘤患者提供精确、医学上合理的治疗方案建议是可行的。假设模型能够处理足够的上下文长度,将数据语料库扩展到更大的患者队列并纳入最新指南,可能会产生更符合事实和指南的回答,并有望提高模型性能。因此,我们鼓励在这个方向上进行进一步的研究,以提高大语言模型在医疗决策过程中的支持效力和可靠性。