文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于胸膜间皮瘤分割的卷积神经网络:概率图阈值分析(CALGB 30901,联盟)

Convolutional Neural Networks for Segmentation of Pleural Mesothelioma: Analysis of Probability Map Thresholds (CALGB 30901, Alliance).

作者信息

Shenouda Mena, Gudmundsson Eyjólfur, Li Feng, Straus Christopher M, Kindler Hedy L, Dudek Arkadiusz Z, Stinchcombe Thomas, Wang Xiaofei, Starkey Adam, Armato Iii Samuel G

机构信息

Department of Radiology, The University of Chicago, Chicago, IL, 60637, USA.

Icelandic Radiation Safety Authority, Reykjavik, Iceland.

出版信息

J Imaging Inform Med. 2025 Apr;38(2):967-978. doi: 10.1007/s10278-024-01092-z. Epub 2024 Sep 12.


DOI:10.1007/s10278-024-01092-z
PMID:39266911
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11950581/
Abstract

The purpose of this study was to evaluate the impact of probability map threshold on pleural mesothelioma (PM) tumor delineations generated using a convolutional neural network (CNN). One hundred eighty-six CT scans from 48 PM patients were segmented by a VGG16/U-Net CNN. A radiologist modified the contours generated at a 0.5 probability threshold. Percent difference of tumor volume and overlap using the Dice Similarity Coefficient (DSC) were compared between the reference standard provided by the radiologist and CNN outputs for thresholds ranging from 0.001 to 0.9. CNN-derived contours consistently yielded smaller tumor volumes than radiologist contours. Reducing the probability threshold from 0.5 to 0.01 decreased the absolute percent volume difference, on average, from 42.93% to 26.60%. Median and mean DSC ranged from 0.57 to 0.59, with a peak at a threshold of 0.2; no distinct threshold was found for percent volume difference. The CNN exhibited deficiencies with specific disease presentations, such as severe pleural effusion or disease in the pleural fissure. No single output threshold in the CNN probability maps was optimal for both tumor volume and DSC. This study emphasized the importance of considering both figures of merit when evaluating deep learning-based tumor segmentations across probability thresholds. This work underscores the need to simultaneously assess tumor volume and spatial overlap when evaluating CNN performance. While automated segmentations may yield comparable tumor volumes to that of the reference standard, the spatial region delineated by the CNN at a specific threshold is equally important.

摘要

本研究的目的是评估概率图阈值对使用卷积神经网络(CNN)生成的胸膜间皮瘤(PM)肿瘤轮廓的影响。对48例PM患者的186份CT扫描进行了VGG16/U-Net CNN分割。一位放射科医生修改了在0.5概率阈值下生成的轮廓。比较了放射科医生提供的参考标准与CNN在0.001至0.9阈值下输出的肿瘤体积百分比差异和使用骰子相似系数(DSC)的重叠情况。CNN得出的轮廓始终比放射科医生得出的轮廓产生更小的肿瘤体积。将概率阈值从0.5降低到0.01,平均绝对体积百分比差异从42.93%降至26.60%。中位数和平均DSC范围为0.57至0.59,在阈值为0.2时达到峰值;未发现体积百分比差异的明显阈值。CNN在特定疾病表现方面存在不足,如严重胸腔积液或胸膜裂中的疾病。CNN概率图中没有一个单一的输出阈值对于肿瘤体积和DSC都是最优的。本研究强调了在评估跨概率阈值的基于深度学习的肿瘤分割时同时考虑这两个品质因数的重要性。这项工作强调了在评估CNN性能时同时评估肿瘤体积和空间重叠的必要性。虽然自动分割可能产生与参考标准相当的肿瘤体积,但CNN在特定阈值下划定的空间区域同样重要。

相似文献

[1]
Convolutional Neural Networks for Segmentation of Pleural Mesothelioma: Analysis of Probability Map Thresholds (CALGB 30901, Alliance).

J Imaging Inform Med. 2025-4

[2]
Convolutional Neural Networks for Segmentation of Malignant Pleural Mesothelioma: Analysis of Probability Map Thresholds (CALGB 30901, Alliance).

ArXiv. 2023-11-30

[3]
Deep convolutional neural networks for the automated segmentation of malignant pleural mesothelioma on computed tomography scans.

J Med Imaging (Bellingham). 2018-7

[4]
Deep learning-based segmentation of malignant pleural mesothelioma tumor on computed tomography scans: application to scans demonstrating pleural effusion.

J Med Imaging (Bellingham). 2020-1

[5]
Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.

Med Phys. 2021-5

[6]
Lung tumor segmentation in 4D CT images using motion convolutional neural networks.

Med Phys. 2021-11

[7]
Esophagus segmentation in CT via 3D fully convolutional neural network and random walk.

Med Phys. 2017-10-23

[8]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

[9]
Computer-aided volumetric assessment of malignant pleural mesothelioma on CT using a random walk-based method.

Int J Comput Assist Radiol Surg. 2016-12-27

[10]
Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases.

Eur J Radiol. 2019-2-1

引用本文的文献

[1]
Radiomics for differentiation of somatic mutation on CT scans of patients with pleural mesothelioma.

J Med Imaging (Bellingham). 2024-11

本文引用的文献

[1]
Prognosis prediction of patients with malignant pleural mesothelioma using conditional variational autoencoder on 3D PET images and clinical data.

Med Phys. 2023-12

[2]
Considerations for Imaging of Malignant Pleural Mesothelioma: A Consensus Statement from the International Mesothelioma Interest Group.

J Thorac Oncol. 2023-3

[3]
Fully automated volumetric measurement of malignant pleural mesothelioma by deep learning AI: validation and comparison with modified RECIST response criteria.

Thorax. 2022-12

[4]
Imaging in pleural mesothelioma: A review of the 15th International Conference of the International Mesothelioma Interest Group.

Lung Cancer. 2022-2

[5]
Accelerating Whole-Body Diffusion-weighted MRI with Deep Learning-based Denoising Image Filters.

Radiol Artif Intell. 2021-7-14

[6]
Deep-learning based classification distinguishes sarcomatoid malignant mesotheliomas from benign spindle cell mesothelial proliferations.

Mod Pathol. 2021-11

[7]
Development of unenhanced CT-based imaging signature for BAP1 mutation status prediction in malignant pleural mesothelioma: Consideration of 2D and 3D segmentation.

Lung Cancer. 2021-7

[8]
Artificial Convolutional Neural Network in Object Detection and Semantic Segmentation for Medical Imaging Analysis.

Front Oncol. 2021-3-9

[9]
Randomized Study of Maintenance Pemetrexed Versus Observation for Treatment of Malignant Pleural Mesothelioma: CALGB 30901.

Clin Lung Cancer. 2020-11

[10]
Deep learning-based segmentation of malignant pleural mesothelioma tumor on computed tomography scans: application to scans demonstrating pleural effusion.

J Med Imaging (Bellingham). 2020-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索