基于深度学习的分类方法可区分肉瘤样恶性间皮瘤与良性梭形细胞间皮增生。

Deep-learning based classification distinguishes sarcomatoid malignant mesotheliomas from benign spindle cell mesothelial proliferations.

机构信息

Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.

School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall Biomedical Research Centre (BRC), Vancouver, BC, Canada.

出版信息

Mod Pathol. 2021 Nov;34(11):2028-2035. doi: 10.1038/s41379-021-00850-6. Epub 2021 Jun 10.

Abstract

Sarcomatoid mesothelioma is an aggressive malignancy that can be challenging to distinguish from benign spindle cell mesothelial proliferations based on biopsy, and this distinction is crucial to patient treatment and prognosis. A novel deep learning based classifier may be able to aid pathologists in making this critical diagnostic distinction. SpindleMesoNET was trained on cases of malignant sarcomatoid mesothelioma and benign spindle cell mesothelial proliferations. Performance was assessed through cross-validation on the training set, on an independent set of challenging cases referred for expert opinion ('referral' test set), and on an externally stained set from outside institutions ('externally stained' test set). SpindleMesoNET predicted the benign or malignant status of cases with AUC's of 0.932, 0.925, and 0.989 on the cross-validation, referral and external test sets, respectively. The accuracy of SpindleMesoNET on the referral set cases (92.5%) was comparable to the average accuracy of 3 experienced pathologists on the same slide set (91.7%). We conclude that SpindleMesoNET can accurately distinguish sarcomatoid mesothelioma from benign spindle cell mesothelial proliferations. A deep learning system of this type holds potential for future use as an ancillary test in diagnostic pathology.

摘要

肉瘤样间皮瘤是一种侵袭性恶性肿瘤,基于活检很难将其与良性梭形细胞间皮增生区分开来,这种区分对患者的治疗和预后至关重要。一种新的基于深度学习的分类器可能有助于病理学家做出这一关键诊断区分。SpindleMesoNET 是在恶性肉瘤样间皮瘤和良性梭形细胞间皮增生病例上进行训练的。通过在训练集上进行交叉验证、在具有挑战性的病例中进行独立转诊(“转诊”测试集)和在外部机构的外染集上进行评估(“外染”测试集)来评估性能。SpindleMesoNET 在交叉验证、转诊和外部测试集上预测病例的良性或恶性状态的 AUC 分别为 0.932、0.925 和 0.989。SpindleMesoNET 在转诊测试集上的准确率(92.5%)与 3 位经验丰富的病理学家在同一幻灯片集上的平均准确率(91.7%)相当。我们得出结论,SpindleMesoNET 可以准确地区分肉瘤样间皮瘤和良性梭形细胞间皮增生。这种类型的深度学习系统有可能作为辅助诊断病理学测试在未来得到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索