Suppr超能文献

PEG 处理不适合研究根系相关特性,因为它会改变大麦(Hordeum vulgare L.)的根系解剖结构。

PEG treatment is unsuitable to study root related traits as it alters root anatomy in barley (Hordeum vulgare L.).

机构信息

Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany.

Department of Structural Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.

出版信息

BMC Plant Biol. 2024 Sep 13;24(1):856. doi: 10.1186/s12870-024-05529-z.

Abstract

BACKGROUND

The frequency and severity of abiotic stress events, especially drought, are increasing due to climate change. The plant root is the most important organ for water uptake and the first to be affected by water limitation. It is therefore becoming increasingly important to include root traits in studies on drought stress tolerance. However, phenotyping under field conditions remains a challenging task. In this study, plants were grown in a hydroponic system with polyethylene glycol as an osmotic stressor and in sand pots to examine the root system of eleven spring barley genotypes. The root anatomy of two genotypes with different response to drought was investigated microscopically.

RESULTS

Root diameter increased significantly (p < 0.05) under polyethylene glycol treatment by 54% but decreased significantly (p < 0.05) by 12% under drought stress in sand pots. Polyethylene glycol treatment increased root tip diameter (51%) and reduced diameter of the elongation zone (14%) compared to the control. Under drought stress, shoot mass of plants grown in sand pots showed a higher correlation (r = 0.30) with the shoot mass under field condition than polyethylene glycol treated plants (r = -0.22).

CONCLUSION

These results indicate that barley roots take up polyethylene glycol by the root tip and polyethylene glycol prevents further water uptake. Polyethylene glycol-triggered osmotic stress is therefore unsuitable for investigating root morphology traits in barley. Root architecture of roots grown in sand pots is more comparable to roots grown under field conditions.

摘要

背景

由于气候变化,非生物胁迫事件(尤其是干旱)的频率和严重程度正在增加。植物根系是吸水的最重要器官,也是首先受到水分限制影响的器官。因此,在干旱胁迫耐受性研究中纳入根系性状变得越来越重要。然而,在田间条件下进行表型分析仍然是一项具有挑战性的任务。在这项研究中,使用聚乙二醇作为渗透胁迫剂在水培系统中种植植物,并在沙盆中种植,以研究 11 个春大麦基因型的根系。通过显微镜研究了对干旱具有不同响应的两个基因型的根解剖结构。

结果

聚乙二醇处理下,根直径显著增加(p<0.05),增加了 54%,而在沙盆中的干旱胁迫下,根直径显著减少(p<0.05),减少了 12%。与对照相比,聚乙二醇处理增加了根尖直径(51%),减少了伸长区直径(14%)。在沙盆中生长的植物的地上生物量与田间条件下的地上生物量的相关性更高(r=0.30),而聚乙二醇处理的植物的相关性较低(r=-0.22)。

结论

这些结果表明,大麦根系通过根尖吸收聚乙二醇,聚乙二醇阻止了进一步的水分吸收。因此,聚乙二醇引发的渗透胁迫不适合研究大麦的根系形态特征。在沙盆中生长的根系的根系结构与在田间条件下生长的根系更具可比性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de9e/11396634/3090af23ed58/12870_2024_5529_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验