Garavaglia Marco, McGregor Callum, Bommareddy Rajesh Reddy, Irorere Victor, Arenas Christian, Robazza Alberto, Minton Nigel Peter, Kovacs Katalin
BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K.
Better Dairy Limited, Unit J/K Bagel Factory, 24 White Post Lane, London E9 5SZ, U.K.
ACS Sustain Chem Eng. 2024 Aug 26;12(36):13486-13499. doi: 10.1021/acssuschemeng.4c03561. eCollection 2024 Sep 9.
Stable production of value-added products using a microbial chassis is pivotal for determining the industrial suitability of the engineered biocatalyst. Microbial cells often lose the multicopy expression plasmids during long-term cultivations. Owing to the advantages related to titers, yields, and productivities when using a multicopy expression system compared with genomic integrations, plasmid stability is essential for industrially relevant biobased processes. H16, a facultative chemolithoautotrophic bacterium, has been successfully engineered to convert inorganic carbon obtained from CO fixation into value-added products. The application of this unique capability in the biotech industry has been hindered by . H16 inability to stably maintain multicopy plasmids. In this study, we designed and tested plasmid addiction systems based on the complementation of essential genes. Among these, implementation of a plasmid addiction tool based on the complementation of mutants lacking RubisCO, which is essential for CO fixation, successfully stabilized a multicopy plasmid. Expressing the mevalonate pathway operon (MvaES) using this addiction system resulted in the production of ∼10 g/L mevalonate with carbon yields of ∼25%. The mevalonate titers and yields obtained here using CO are the highest achieved to date for the production of C6 compounds from C1 feedstocks.
利用微生物底盘稳定生产增值产品对于确定工程化生物催化剂的工业适用性至关重要。微生物细胞在长期培养过程中常常会丢失多拷贝表达质粒。与基因组整合相比,使用多拷贝表达系统在滴度、产量和生产率方面具有优势,因此质粒稳定性对于工业相关的生物基过程至关重要。嗜碱假单胞菌H16是一种兼性化能自养细菌,已成功进行工程改造,可将通过固定CO₂获得的无机碳转化为增值产品。这种独特能力在生物技术产业中的应用受到H16无法稳定维持多拷贝质粒的阻碍。在本研究中,我们基于必需基因的互补设计并测试了质粒成瘾系统。其中,基于对缺乏对CO₂固定至关重要的核酮糖-1,5-二磷酸羧化酶/加氧酶(RubisCO)的突变体进行互补的质粒成瘾工具的实施,成功地稳定了多拷贝质粒。使用这种成瘾系统表达甲羟戊酸途径操纵子(MvaES),产生了约10 g/L的甲羟戊酸,碳产率约为25%。此处使用CO₂获得的甲羟戊酸滴度和产率是迄今为止从C₁原料生产C₆化合物所达到的最高水平。