Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Bioresour Technol. 2024 Oct;410:131214. doi: 10.1016/j.biortech.2024.131214. Epub 2024 Aug 9.
Despite its prominence, the ability to engineer Cupriavidus necator H16 for inorganic carbon uptake and fixation is underexplored. We tested the roles of endogenous and heterologous genes on C. necator inorganic carbon metabolism. Deletion of β-carbonic anhydrase can had the most deleterious effect on C. necator autotrophic growth. Replacement of this native uptake system with several classes of dissolved inorganic carbon (DIC) transporters from Cyanobacteria and chemolithoautotrophic bacteria recovered autotrophic growth and supported higher cell densities compared to wild-type (WT) C. necator in batch culture. Strains expressing Halothiobacillus neopolitanus DAB2 (hnDAB2) and diverse rubisco homologs grew in CO similarly to the wild-type strain. Our experiments suggest that the primary role of carbonic anhydrase during autotrophic growth is to support anaplerotic metabolism, and an array of DIC transporters can complement this function. This work demonstrates flexibility in HCO uptake and CO fixation in C. necator, providing new pathways for CO-based biomanufacturing.
尽管 Cupriavidus necator H16 在无机碳摄取和固定方面具有重要作用,但对其进行工程改造的研究仍不够充分。我们测试了内源和异源基因在 C. necator 无机碳代谢中的作用。β-碳酸酐酶的缺失对 C. necator 自养生长的影响最大。用来自蓝细菌和化能自养细菌的几类溶解无机碳(DIC)转运体替代这种天然的摄取系统,在分批培养中恢复了自养生长,并与野生型(WT)C. necator 相比,支持更高的细胞密度。表达 Halothiobacillus neopolitanus DAB2(hnDAB2)和多种 rubisco 同源物的菌株在 CO 中生长情况与野生型菌株相似。我们的实验表明,碳酸酐酶在自养生长过程中的主要作用是支持补料代谢,并且一系列 DIC 转运体可以补充这一功能。这项工作展示了 C. necator 中 HCO 摄取和 CO 固定的灵活性,为基于 CO 的生物制造提供了新途径。