Im Chaeho, Kim Minsoo, Kim Jung Rae, Valgepea Kaspar, Modin Oskar, Nygård Yvonne, Franzén Carl Johan
Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden.
School of Chemical Engineering, Pusan National University, Busan, Republic of Korea.
Front Microbiol. 2024 Aug 29;15:1438758. doi: 10.3389/fmicb.2024.1438758. eCollection 2024.
Fossil resources must be replaced by renewable resources in production systems to mitigate green-house gas emissions and combat climate change. Electro-fermentation utilizes a bioelectrochemical system (BES) to valorize industrial and municipal waste. Current electro-fermentation research is mainly focused on microbial electrosynthesis using CO for producing commodity chemicals and replacing petroleum-based infrastructures. However, slow production rates and low titers of metabolites during CO-based microbial electrosynthesis impede its implementation to the real application in the near future. On the other hand, CO is a highly reactive gas and an abundant feedstock discharged from fossil fuel-based industry. Here, we investigated CO and CO electro-fermentation, using a CO-enriched culture. Fresh cow fecal waste was enriched under an atmosphere of 50% CO and 20% CO in N using serial cultivation. The CO-enriched culture was dominated by (≥89%) and showed electro-activity in a BES reactor with CO sparging. When 50% CO was included in the 20% CO gas with 10 mA applied current, acetate and ethanol were produced up to 12.9 ± 2.7 mM and 2.7 ± 1.1 mM, respectively. The coulombic efficiency was estimated to 148% ± 8% without an electron mediator. At 25 mA, the culture showed faster initial growth and acetate production but no ethanol production, and only at 86% ± 4% coulombic efficiency. The maximum optical density (OD) of 10 mA and 25 mA reactors were 0.29 ± 0.07 and 0.41 ± 0.03, respectively, whereas it was 0.77 ± 0.19 without electric current. These results show that CO electro-fermentation at low current can be an alternative way of valorizing industrial waste gas using a bioelectrochemical system.
为了减少温室气体排放并应对气候变化,生产系统中的化石资源必须被可再生资源所取代。电发酵利用生物电化学系统(BES)将工业和城市废物转化为有价值的产品。目前的电发酵研究主要集中在利用一氧化碳进行微生物电合成,以生产商品化学品并取代石油基基础设施。然而,基于一氧化碳的微生物电合成过程中代谢产物的生产率低和滴度低,阻碍了其在不久的将来在实际应用中的实施。另一方面,一氧化碳是一种高反应性气体,是化石燃料工业排放的丰富原料。在此,我们使用富含一氧化碳的培养物研究了一氧化碳和二氧化碳的电发酵。新鲜牛粪在含50%一氧化碳和20%二氧化碳的氮气气氛中通过连续培养进行富集。富含一氧化碳的培养物以(≥89%)为主,并在通入一氧化碳的BES反应器中表现出电活性。当在含20%二氧化碳的气体中加入50%一氧化碳并施加10 mA电流时,分别产生了高达12.9±2.7 mM的乙酸盐和2.7±1.1 mM的乙醇。在没有电子介质的情况下,库仑效率估计为148%±8%。在25 mA时,培养物显示出更快的初始生长和乙酸盐产生,但没有乙醇产生,库仑效率仅为86%±4%。10 mA和25 mA反应器的最大光密度(OD)分别为0.29±0.07和0.41±0.03,而无电流时为0.77±0.19。这些结果表明,低电流下的一氧化碳电发酵可以是一种利用生物电化学系统将工业废气转化为有价值产品的替代方法。