Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
mSystems. 2024 Oct 22;9(10):e0061124. doi: 10.1128/msystems.00611-24. Epub 2024 Sep 13.
Plant-microbe communication involves a rich language of chemical signals. Among these signals are plant hormones such as auxins, which are primarily recognized for their roles in plant development. However, they also function in modulating plant-microbe interactions. Interestingly, many bacteria are capable of producing auxins too. Yet, the mechanisms by which auxins affect bacteria and the regulatory processes controlling their production are largely unknown. Rico-Jiménez and colleagues present new insights into the effects of the auxin indole-3-acetic acid on the physiology of the rhizobacterium (M. Rico-Jiménez, Z. Udaondo, T. Krell, and M. A. Matilla, mSystems 9:e00165-24, 2024, https://doi.org/10.1128/msystems.00165-24). Their work provides a deeper mechanistic understanding of bacterial transcriptional responses to plant hormones and the impact on bacterial fitness in the context of the rhizosphere environment.
植物-微生物通讯涉及丰富的化学信号语言。这些信号包括植物激素,如生长素,它们主要因其在植物发育中的作用而被认识。然而,它们也在调节植物-微生物相互作用中发挥作用。有趣的是,许多细菌也能够产生生长素。然而,生长素影响细菌的机制以及控制其产生的调节过程在很大程度上是未知的。Rico-Jiménez 及其同事提出了生长素吲哚-3-乙酸对根际细菌(M. Rico-Jiménez、Z. Udaondo、T. Krell 和 M. A. Matilla,mSystems 9:e00165-24,2024,https://doi.org/10.1128/msystems.00165-24)生理学的影响的新见解。他们的工作提供了对细菌对植物激素的转录反应的更深入的机制理解,以及在根际环境背景下对细菌适应性的影响。