Suppr超能文献

用于少样本医学图像分割的原型引导图推理网络

Prototype-Guided Graph Reasoning Network for Few-Shot Medical Image Segmentation.

作者信息

Huang Wendong, Hu Jinwu, Xiao Junhao, Wei Yang, Bi Xiuli, Xiao Bin

出版信息

IEEE Trans Med Imaging. 2025 Feb;44(2):761-773. doi: 10.1109/TMI.2024.3459943. Epub 2025 Feb 4.

Abstract

Few-shot semantic segmentation (FSS) is of tremendous potential for data-scarce scenarios, particularly in medical segmentation tasks with merely a few labeled data. Most of the existing FSS methods typically distinguish query objects with the guidance of support prototypes. However, the variances in appearance and scale between support and query objects from the same anatomical class are often exceedingly considerable in practical clinical scenarios, thus resulting in undesirable query segmentation masks. To tackle the aforementioned challenge, we propose a novel prototype-guided graph reasoning network (PGRNet) to explicitly explore potential contextual relationships in structured query images. Specifically, a prototype-guided graph reasoning module is proposed to perform information interaction on the query graph under the guidance of support prototypes to fully exploit the structural properties of query images to overcome intra-class variances. Moreover, instead of fixed support prototypes, a dynamic prototype generation mechanism is devised to yield a collection of dynamic support prototypes by mining rich contextual information from support images to further boost the efficiency of information interaction between support and query branches. Equipped with the proposed two components, PGRNet can learn abundant contextual representations for query images and is therefore more resilient to object variations. We validate our method on three publicly available medical segmentation datasets, namely CHAOS-T2, MS-CMRSeg, and Synapse. Experiments indicate that the proposed PGRNet outperforms previous FSS methods by a considerable margin and establishes a new state-of-the-art performance.

摘要

少样本语义分割(FSS)在数据稀缺的场景中具有巨大潜力,特别是在仅有少量标注数据的医学分割任务中。现有的大多数FSS方法通常在支持原型的指导下区分查询对象。然而,在实际临床场景中,来自同一解剖类别的支持对象和查询对象在外观和尺度上的差异往往非常大,从而导致不理想的查询分割掩码。为了应对上述挑战,我们提出了一种新颖的原型引导图推理网络(PGRNet),以明确探索结构化查询图像中的潜在上下文关系。具体而言,提出了一种原型引导图推理模块,在支持原型的指导下对查询图进行信息交互,以充分利用查询图像的结构属性来克服类内差异。此外,我们设计了一种动态原型生成机制,而不是固定的支持原型,通过从支持图像中挖掘丰富的上下文信息来生成一组动态支持原型,以进一步提高支持分支和查询分支之间的信息交互效率。配备了所提出的两个组件,PGRNet可以为查询图像学习丰富的上下文表示,因此对对象变化更具弹性。我们在三个公开可用的医学分割数据集CHAOS-T2、MS-CMRSeg和Synapse上验证了我们的方法。实验表明,所提出的PGRNet明显优于以前的FSS方法,并建立了新的最优性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验