Suppr超能文献

通过协作切片对齐增强三维医学图像的少样本语义分割

Boosting Few-shot Semantic Segmentation of 3D Medical Images via Collaborative Slice Alignment.

作者信息

Duan Ran, Pei Jialun, Wang Zhiwei, Zhang Ruiheng, Li Qiang, Heng Pheng-Ann

出版信息

IEEE J Biomed Health Inform. 2025 Jun 23;PP. doi: 10.1109/JBHI.2025.3582160.

Abstract

Few-shot semantic segmentation (FSS) of 3D medical images requires finding a 2D slice from the labeled volume as support to 'query' slices of the unlabeled one. Accurately determining support slices is crucial for learning representative prototypical features, thereby enhancing segmentation accuracy. The existing methods typically resort to the true position of the query target to align the query with support slices or simply exploit one key support slice to segment all query slices, which inevitably results in poor practicality and mis-segmentation. In this regard, we seek a practical and efficient solution by proposing a novel Collaborative Slice Alignment (CSA) module, which densely assigns each query slice its own fittest support without knowing the target prior. Concretely, our CSA first estimates the confidence scores of slices from the sorting task to implicitly reflect their physical location in the human body. The estimated scores are considered as spatial references for aligning support slices and query slices so that each matching pair shares the most similar image contents. Moreover, the self-learnable ranking objective allows CSA to transfer internal knowledge into both support and query features to further boost the FSS performance. Additionally, we introduce an Information Reconciliation (InRe) module to mitigate the inconsistent feature distribution caused by the individual differences between support and query images. Experimental results demonstrate that the combination of CSA and InRe achieves an average Dice score improvement of at least 8.61% across three datasets, consistently outperforming other state-of-the-art methods.

摘要

三维医学图像的少样本语义分割(FSS)需要从标记体积中找到一个二维切片作为对未标记体积的“查询”切片的支持。准确确定支持切片对于学习具有代表性的原型特征至关重要,从而提高分割精度。现有方法通常借助查询目标的真实位置将查询与支持切片对齐,或者简单地利用一个关键支持切片对所有查询切片进行分割,这不可避免地导致实用性差和分割错误。在这方面,我们通过提出一种新颖的协作切片对齐(CSA)模块来寻求一种实用且高效的解决方案,该模块在不知道目标先验的情况下为每个查询切片密集分配其自己最合适的支持。具体而言,我们的CSA首先从排序任务中估计切片的置信度分数,以隐式反映它们在人体中的物理位置。估计的分数被视为对齐支持切片和查询切片的空间参考,以便每个匹配对共享最相似的图像内容。此外,可自学习的排序目标允许CSA将内部知识转移到支持特征和查询特征中,以进一步提高FSS性能。此外,我们引入了一个信息协调(InRe)模块来减轻由支持图像和查询图像之间的个体差异引起的特征分布不一致。实验结果表明,CSA和InRe的组合在三个数据集上实现了平均Dice分数至少提高8.61%,始终优于其他现有最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验