Suppr超能文献

用于减少光子计数CT数据量的特征二进制压缩

Eigenbin compression for reducing photon-counting CT data size.

作者信息

Schmidt Taly Gilat, Yin Zhye, Yao Jingwu, Fan Jiahua

机构信息

Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, USA.

GE HealthCare, Waukesha, Wisconsin, USA.

出版信息

Med Phys. 2024 Dec;51(12):8751-8760. doi: 10.1002/mp.17409. Epub 2024 Sep 13.

Abstract

BACKGROUND

Photon-counting CT (PCCT) systems acquire multiple spectral measurements at high spatial resolution, providing numerous image quality benefits while also increasing the amount of data that must be transferred through the gantry slip ring.

PURPOSE

This study proposes a lossy method to compress photon-counting CT data using eigenvector analysis, with the goal of providing image quality sufficient for applications that require a rapid initial reconstruction, such as to confirm anatomical coverage, scan quality, and to support automated advanced applications. The eigenbin compression method was experimentally evaluated on a clinical silicon PCCT prototype system.

METHODS

The proposed eigenbin method performs principal component analysis (PCA) on a set of PCCT calibration measurements. PCA finds the orthogonal axes or eigenvectors, which capture the maximum variance in the N dimensional photon-count data space, where N is the number of acquired energy bins. To reduce the dimensionality of the PCCT data, the data are linearly transformed into a lower dimensional space spanned by the M < N eigenvectors with highest eigenvalues (i.e., the vectors that account for most of the information in the data). Only M coefficients are then transferred per measurement, which we term eigenbin values. After transmission, the original N energy-bin measurements are estimated as a linear combination of the M eigenvectors. Two versions of the eigenbin method were investigated: pixel-specific and pixel-general. The pixel-specific eigenbin method determines eigenvectors for each individual detector pixel, while the more practically realizable pixel-general eigenbin method finds one set of eigenvectors for the entire detector array. The eigenbin method was experimentally evaluated by scanning a 20 cm diameter Gammex Multienergy phantom with different material inserts on a clinical silicon-based PCCT prototype. The method was evaluated with the number of eigenbins varied between two and four. In each case, the eigenbins were used to estimate the original 8-bin data, after which material decomposition was performed. The mean, standard deviation, and contrast-to-noise ratio (CNR) of values in the reconstructed basis and virtual monoenergetic images (VMI) were compared for the original 8-bin data and for the eigenbin data.

RESULTS

The pixel-specific eigenbin method reduced photon-counting CT data size by a factor of four with <5% change in mean values and a small noise penalty (mean change in noise of <12%, maximum change in noise of 20% for basis images). The pixel-general eigenbin compression method reduced data size by a factor of 2.67 with <5% change in mean values and a less than 10% noise penalty in the basis images (average noise penalty ≤5%). The noise penalty and errors were less for the VMIs than for the basis images, resulting in <5% change in CNR in the VMIs.

CONCLUSION

The eigenbin compression method reduced photon-counting CT data size by a factor of two to four with less than 5% change in mean values, noise penalty of less than 10%-20%, and change in CNR ranging from 15% decrease to 24% increase. Eigenbin compression reduces the data transfer time and storage space of photon-counting CT data for applications that require rapid initial reconstructions.

摘要

背景

光子计数CT(PCCT)系统能够在高空间分辨率下获取多个光谱测量值,在带来诸多图像质量优势的同时,也增加了必须通过机架滑环传输的数据量。

目的

本研究提出一种使用特征向量分析对光子计数CT数据进行有损压缩的方法,目标是为需要快速初始重建的应用提供足够的图像质量,例如确认解剖覆盖范围、扫描质量以及支持自动化高级应用。在临床硅基PCCT原型系统上对特征仓压缩方法进行了实验评估。

方法

所提出的特征仓方法对一组PCCT校准测量值执行主成分分析(PCA)。PCA找到正交轴或特征向量,这些向量捕获N维光子计数数据空间中的最大方差,其中N是采集的能量仓数量。为了降低PCCT数据的维度,将数据线性变换到由M < N个具有最高特征值的特征向量所跨越的低维空间中(即占数据中大部分信息的向量)。然后每次测量仅传输M个系数,我们将其称为特征仓值。传输后,将原始的N个能量仓测量值估计为M个特征向量的线性组合。研究了特征仓方法的两个版本:特定像素和通用像素。特定像素特征仓方法为每个单独的探测器像素确定特征向量,而更具实际可实现性的通用像素特征仓方法为整个探测器阵列找到一组特征向量。通过在临床硅基PCCT原型上扫描具有不同材料插入物的直径20 cm的Gammex多能量体模,对特征仓方法进行了实验评估。该方法在特征仓数量在2到4之间变化的情况下进行评估。在每种情况下,使用特征仓来估计原始的8仓数据,然后进行材料分解。比较了原始8仓数据和特征仓数据在重建基图像和虚拟单能图像(VMI)中的值的均值、标准差和对比度噪声比(CNR)。

结果

特定像素特征仓方法将光子计数CT数据大小减少了四倍,均值变化<5%,噪声惩罚较小(基图像噪声平均变化<12%,噪声最大变化20%)。通用像素特征仓压缩方法将数据大小减少了2.67倍,均值变化<5%,基图像中的噪声惩罚小于10%(平均噪声惩罚≤5%)。VMI的噪声惩罚和误差小于基图像,导致VMI中的CNR变化<5%。

结论

特征仓压缩方法将光子计数CT数据大小减少了二到四倍,均值变化小于5%,噪声惩罚小于10%-20%,CNR变化范围从降低15%到增加24%。特征仓压缩减少了光子计数CT数据对于需要快速初始重建的应用的数据传输时间和存储空间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验