Suppr超能文献

基于UNet的光子计数CT中使用虚拟单能图像的多器官分割

UNet-based multi-organ segmentation in photon counting CT using virtual monoenergetic images.

作者信息

Baek Sumin, Ye Dong Hye, Lee Okkyun

机构信息

Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.

Department of Computer Science, College of Arts & Science, Georgia State University, Atlanta, Georgia, USA.

出版信息

Med Phys. 2025 Jan;52(1):481-488. doi: 10.1002/mp.17440. Epub 2024 Oct 7.

Abstract

BACKGROUND

Multi-organ segmentation aids in disease diagnosis, treatment, and radiotherapy. The recently emerged photon counting detector-based CT (PCCT) provides spectral information of the organs and the background tissue and may improve segmentation performance.

PURPOSE

We propose UNet-based multi-organ segmentation in PCCT using virtual monoenergetic images (VMI) to exploit spectral information effectively.

METHODS

The proposed method consists of the following steps: Noise reduction in bin-wise images, image-based material decomposition, generating VMIs, and deep learning-based segmentation. VMIs are synthesized for various x-ray energies using basis images. The UNet-based networks (3D UNet, Swin UNETR) were used for segmentation, and dice similarity coefficients (DSC) and 3D visualization of the segmented result were evaluation indicators. We validated the proposed method for the liver, pancreas, and spleen segmentation using abdominal phantoms from 55 subjects for dual- and quad-energy bins. We compared it to the conventional PCCT-based segmentation, which uses only the (noise-reduced) bin-wise images. The experiments were conducted on two cases by adjusting the dose levels.

RESULTS

The proposed method improved the training stability for most cases. With the proposed method, the average DSC for the three organs slightly increased from 0.933 to 0.95, and the standard deviation decreased from 0.066 to 0.047, for example, in the low dose case (using VMIs v.s. bin-wise images from dual-energy bins; 3D UNet).

CONCLUSIONS

The proposed method using VMIs improves training stability for multi-organ segmentation in PCCT, particularly when the number of energy bins is small.

摘要

背景

多器官分割有助于疾病诊断、治疗和放射治疗。最近出现的基于光子计数探测器的CT(PCCT)可提供器官和背景组织的光谱信息,并可能提高分割性能。

目的

我们提出在PCCT中使用虚拟单能图像(VMI)进行基于UNet的多器官分割,以有效利用光谱信息。

方法

所提出的方法包括以下步骤:逐箱图像降噪、基于图像的物质分解、生成VMI以及基于深度学习的分割。使用基础图像为各种X射线能量合成VMI。基于UNet的网络(3D UNet、Swin UNETR)用于分割,分割结果的骰子相似系数(DSC)和3D可视化作为评估指标。我们使用来自55名受试者的腹部模型对双能和四能箱的肝脏、胰腺和脾脏分割验证了所提出的方法。我们将其与仅使用(降噪后的)逐箱图像的传统基于PCCT的分割方法进行了比较。通过调整剂量水平在两个病例上进行了实验。

结果

所提出的方法在大多数情况下提高了训练稳定性。例如,在低剂量情况下(使用VMI与来自双能箱的逐箱图像;3D UNet),使用所提出的方法时,三个器官的平均DSC从0.933略有增加到0.95,标准差从0.066降低到0.047。

结论

所提出的使用VMI的方法提高了PCCT中多器官分割的训练稳定性,特别是在能量箱数量较少时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验