Kenagy Hannah S, Heald Colette L, Tahsini Nadia, Goss Matthew B, Kroll Jesse H
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Sci Adv. 2024 Sep 13;10(37):eado1482. doi: 10.1126/sciadv.ado1482.
Secondary organic aerosol (SOA), atmospheric particulate matter formed from low-volatility products of volatile organic compound (VOC) oxidation, affects both air quality and climate. Current 3D models, however, cannot reproduce the observed variability in atmospheric organic aerosol. Because many SOA model descriptions are derived from environmental chamber experiments, our ability to represent atmospheric conditions in chambers directly affects our ability to assess the air quality and climate impacts of SOA. Here, we develop an approach that leverages global modeling and detailed mechanisms to design chamber experiments that mimic the atmospheric chemistry of organic peroxy radicals (RO), a key intermediate in VOC oxidation. Drawing on decades of laboratory experiments, we develop a framework for quantitatively describing RO chemistry and show that no previous experimental approaches to studying SOA formation have accessed the relevant atmospheric RO fate distribution. We show proof-of-concept experiments that demonstrate how SOA experiments can access a range of atmospheric chemical environments and propose several directions for future studies.
二次有机气溶胶(SOA)是由挥发性有机化合物(VOC)氧化产生的低挥发性产物形成的大气颗粒物,它会影响空气质量和气候。然而,目前的三维模型无法再现观测到的大气有机气溶胶的变异性。由于许多SOA模型描述源自环境舱实验,我们在舱内再现大气条件的能力直接影响我们评估SOA对空气质量和气候影响的能力。在此,我们开发了一种方法,利用全球建模和详细机制来设计能够模拟有机过氧自由基(RO)大气化学过程的舱实验,RO是VOC氧化过程中的关键中间体。基于数十年的实验室实验,我们开发了一个定量描述RO化学过程的框架,并表明以前研究SOA形成的实验方法均未涉及相关的大气RO归宿分布。我们展示了概念验证实验,证明了SOA实验如何能够涵盖一系列大气化学环境,并为未来研究提出了几个方向。