Suppr超能文献

非绝热分子动力学模拟分析中的无监督机器学习

Unsupervised Machine Learning in the Analysis of Nonadiabatic Molecular Dynamics Simulation.

作者信息

Zhu Yifei, Peng Jiawei, Xu Chao, Lan Zhenggang

机构信息

MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China.

出版信息

J Phys Chem Lett. 2024 Sep 26;15(38):9601-9619. doi: 10.1021/acs.jpclett.4c01751. Epub 2024 Sep 13.

Abstract

The all-atomic full-dimensional-level simulations of nonadiabatic molecular dynamics (NAMD) in large realistic systems has received high research interest in recent years. However, such NAMD simulations normally generate an enormous amount of time-dependent high-dimensional data, leading to a significant challenge in result analyses. Based on unsupervised machine learning (ML) methods, considerable efforts were devoted to developing novel and easy-to-use analysis tools for the identification of photoinduced reaction channels and the comprehensive understanding of complicated molecular motions in NAMD simulations. Here, we tried to survey recent advances in this field, particularly to focus on how to use unsupervised ML methods to analyze the trajectory-based NAMD simulation results. Our purpose is to offer a comprehensive discussion on several essential components of this analysis protocol, including the selection of ML methods, the construction of molecular descriptors, the establishment of analytical frameworks, their advantages and limitations, and persistent challenges.

摘要

近年来,在大型实际系统中进行非绝热分子动力学(NAMD)的全原子全维水平模拟受到了高度的研究关注。然而,此类NAMD模拟通常会生成大量随时间变化的高维数据,给结果分析带来了重大挑战。基于无监督机器学习(ML)方法,人们投入了大量精力来开发新颖且易于使用的分析工具,用于识别光诱导反应通道以及全面理解NAMD模拟中的复杂分子运动。在此,我们试图综述该领域的最新进展,尤其关注如何使用无监督ML方法来分析基于轨迹的NAMD模拟结果。我们的目的是对该分析协议的几个关键组成部分进行全面讨论,包括ML方法的选择、分子描述符的构建、分析框架的建立、它们的优点和局限性以及持续存在的挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验