Bharti V, Sugawa S, Kunimi M, Chauhan V S, Mahesh T P, Mizoguchi M, Matsubara T, Tomita T, de Léséleuc S, Ohmori K
<a href="https://ror.org/04wqh5h97">Institute for Molecular Science</a>, National Institutes of Natural Sciences, Okazaki 444-8585, Japan.
<a href="https://ror.org/0516ah480">SOKENDAI (The Graduate University for Advanced Studies)</a>, Okazaki 444-8585, Japan.
Phys Rev Lett. 2024 Aug 30;133(9):093405. doi: 10.1103/PhysRevLett.133.093405.
Rydberg atoms in optical lattices and tweezers is now a well-established platform for simulating quantum spin systems. However, the role of the atoms' spatial wave function has not been examined in detail experimentally. Here, we show a strong spin-motion coupling emerging from the large variation of the interaction potential over the wave function spread. We observe its clear signature on the ultrafast many-body nanosecond-dynamics of atoms excited to a Rydberg S state, using picosecond pulses, from an unity-filling atomic Mott-insulator. We also propose an approach to tune arbitrarily the strength of the spin-motion coupling relative to the motional energy scale set by trapping potentials. Our work provides a new direction for exploring the dynamics of strongly correlated quantum systems by adding the motional degree of freedom to the Rydberg simulation toolbox.
光学晶格和光镊中的里德堡原子如今是用于模拟量子自旋系统的成熟平台。然而,原子空间波函数的作用尚未得到详细的实验研究。在此,我们展示了由于相互作用势在波函数展宽上的巨大变化而产生的强自旋 - 运动耦合。我们利用皮秒脉冲,从单原子填充的原子莫特绝缘体中激发原子至里德堡S态,观察到了这种耦合在原子超快多体纳秒动力学上的清晰特征。我们还提出了一种方法,可相对于由捕获势设定的运动能量尺度任意调节自旋 - 运动耦合的强度。我们的工作通过在里德堡模拟工具箱中加入运动自由度,为探索强关联量子系统的动力学提供了一个新方向。