Dave Harshil, Krupa Sean, Lebow Paul
Opt Lett. 2024 Sep 15;49(18):5023-5026. doi: 10.1364/OL.531810.
Fresnel incoherent correlation holography (FINCH) was created to improve imaging resolution and 3D imaging capabilities using spatially incoherent illumination. The optical setup of a FINCH-based interferometer is closely related to a radial shearing interferometer, which measures the radial phase difference of an input wavefront. By using phase retrieval methodologies from lateral shearing interferometry, namely, differential Zernike fitting (DZF), we show that FINCH-based and radial shearing interferometry can be used for phase retrieval and adaptive optics (AO). In this paper, we describe the phase retrieval algorithm using least squares-based DZF and demonstrate a simple adaptive optics loop with an aberrated point spread function using wave optics simulation. We find that FINCH-based phase retrieval has the advantages of fast phase retrieval measurements, thanks to well-studied least squares-based phase reconstruction methods, improved resolution compared to the Shack-Hartmann-based wavefront sensing, and the simplified optical setup of radial shearing interferometry.
菲涅耳非相干相关全息术(FINCH)的发明是为了利用空间非相干照明提高成像分辨率和三维成像能力。基于FINCH的干涉仪的光学设置与径向剪切干涉仪密切相关,后者测量输入波前的径向相位差。通过使用横向剪切干涉术中的相位恢复方法,即差分泽尼克拟合(DZF),我们表明基于FINCH的干涉术和径向剪切干涉术可用于相位恢复和自适应光学(AO)。在本文中,我们描述了使用基于最小二乘法的DZF的相位恢复算法,并通过波动光学模拟展示了一个具有像差点扩展函数的简单自适应光学环路。我们发现,基于FINCH的相位恢复具有相位恢复测量速度快的优点,这得益于经过充分研究的基于最小二乘法的相位重建方法,与基于夏克-哈特曼的波前传感相比分辨率有所提高,以及径向剪切干涉术简化的光学设置。