Suppr超能文献

基于脑脊液诱导的稳定且可重现 SERS 传感,结合机器学习实现各种脑膜炎的鉴别诊断。

Cerebrospinal fluid-induced stable and reproducible SERS sensing for various meningitis discrimination assisted with machine learning.

机构信息

Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.

Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, 510555, China.

出版信息

Biosens Bioelectron. 2025 Jan 1;267:116753. doi: 10.1016/j.bios.2024.116753. Epub 2024 Sep 10.

Abstract

Cerebrospinal fluid (CSF)-based pathogen or biochemical testing is the standard approach for clinical diagnosis of various meningitis. However, misdiagnosis and missed diagnosis always occur due to the shortages of unusual clinical manifestations and time-consuming shortcomings, low sensitivity, and poor specificity. Here, for the first time, we propose a simple and reliable CSF-induced SERS platform assisted with machine learning (ML) for the diagnosis and identification of various meningitis. Stable and reproducible SERS spectra are obtained within 30 s by simply mixing the colloidal silver nanoparticles (Ag NPs) with CSF sample, and the relative standard deviation of signal intensity is achieved as low as 2.1%. In contrast to conventional salt agglomeration agent-induced irreversible aggregation for achieving Raman enhancement, a homogeneous and dispersed colloidal solution is observed within 1 h for the mixture of Ag NPs/CSF (containing 110-140 mM chloride), contributing to excellent SERS stability and reproducibility. In addition, the interaction processes and potential enhancement mechanisms of different Ag colloids-based SERS detection induced by CSF sample or conventional NaCl agglomeration agents are studied in detail through in-situ UV-vis absorption spectra, SERS analysis, SEM and optical imaging. Finally, an ML-assisted meningitis classification model is established based on the spectral feature fusion of characteristic peaks and baseline. By using an optimized KNN algorithm, the classification accuracy of autoimmune encephalitis, novel cryptococcal meningitis, viral meningitis, or tuberculous meningitis could be reached 99%, while an accuracy value of 68.74% is achieved for baseline-corrected spectral data. The CSF-induced SERS detection has the potential to provide a new type of liquid biopsy approach in the fields of diagnosis and early detection of various cerebral ailments.

摘要

脑脊液(CSF)相关病原体或生物化学检测是各种脑膜炎临床诊断的标准方法。然而,由于不常见的临床表现和耗时的缺点,以及灵敏度低、特异性差,误诊和漏诊总是会发生。在这里,我们首次提出了一种简单可靠的基于 CSF 的 SERS 平台,并结合机器学习(ML)方法,用于各种脑膜炎的诊断和鉴别。通过简单地将胶体银纳米颗粒(Ag NPs)与 CSF 样本混合,在 30 秒内即可获得稳定且可重现的 SERS 光谱,信号强度的相对标准偏差低至 2.1%。与传统的盐团聚剂诱导的不可逆聚集以实现拉曼增强相比,在 Ag NPs/CSF(含有 110-140 mM 氯离子)的混合物中观察到在 1 小时内均匀分散的胶体溶液,这有助于实现优异的 SERS 稳定性和重现性。此外,通过原位紫外-可见吸收光谱、SERS 分析、SEM 和光学成像详细研究了 CSF 样本或传统 NaCl 团聚剂诱导的不同 Ag 胶体的 SERS 检测的相互作用过程和潜在增强机制。最后,基于特征峰和基线的光谱特征融合,建立了基于 ML 的脑膜炎分类模型。通过使用优化的 KNN 算法,自身免疫性脑炎、新型隐球菌性脑膜炎、病毒性脑膜炎或结核性脑膜炎的分类准确率可达 99%,而基线校正光谱数据的准确率为 68.74%。CSF 诱导的 SERS 检测有可能为各种脑部疾病的诊断和早期检测提供一种新型的液体活检方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验