Suppr超能文献

通过基于机器学习的 DNA 和 RNA 直接 SERS 光谱假设检验来鉴别疾病的遗传生物标志物。

Discrimination of Genetic Biomarkers of Disease through Machine-Learning-Based Hypothesis Testing of Direct SERS Spectra of DNA and RNA.

机构信息

Department of Materials Science and Engineering, Rutgers University, Piscataway, New Jersey 08854, United States.

Department of Industrial and Systems Engineering, Rutgers University, Piscataway, New Jersey 08854, United States.

出版信息

ACS Sens. 2024 May 24;9(5):2488-2498. doi: 10.1021/acssensors.4c00166. Epub 2024 Apr 29.

Abstract

Cancer is globally a leading cause of death that would benefit from diagnostic approaches detecting it in its early stages. However, despite much research and investment, cancer early diagnosis is still underdeveloped. Owing to its high sensitivity, surface-enhanced Raman spectroscopy (SERS)-based detection of biomarkers has attracted growing interest in this area. Oligonucleotides are an important type of genetic biomarkers as their alterations can be linked to the disease prior to symptom onset. We propose a machine-learning (ML)-enabled framework to analyze complex direct SERS spectra of short, single-stranded DNA and RNA targets to identify relevant mutations occurring in genetic biomarkers, which are key disease indicators. First, by employing -synthesized colloidal silver nanoparticles as SERS substrates, we analyze single-base mutations in ssDNA and RNA sequences using a direct SERS-sensing approach. Then, an ML-based hypothesis test is proposed to identify these changes and differentiate the mutated sequences from the corresponding native ones. Rooted in "functional data analysis," this ML approach fully leverages the rich information and dependencies within SERS spectral data for improved modeling and detection capability. Tested on a large set of DNA and RNA SERS data, including from miR-21 (a known cancer miRNA biomarker), our approach is shown to accurately differentiate SERS spectra obtained from different oligonucleotides, outperforming various data-driven methods across several performance metrics, including accuracy, sensitivity, specificity, and F1-scores. Hence, this work represents a step forward in the development of the combined use of SERS and ML as effective methods for disease diagnosis with real applicability in the clinic.

摘要

癌症是全球主要的致死原因,如果能在早期发现,将大大受益。然而,尽管进行了大量的研究和投资,癌症的早期诊断仍然不够发达。由于其高灵敏度,基于表面增强拉曼光谱(SERS)的生物标志物检测在该领域引起了越来越多的关注。寡核苷酸是一种重要的遗传生物标志物,因为它们的改变可以在疾病症状出现之前与疾病相关联。我们提出了一个基于机器学习(ML)的框架,用于分析短的、单链 DNA 和 RNA 靶标复杂的直接 SERS 光谱,以识别遗传生物标志物中发生的相关突变,这些突变是关键的疾病指标。首先,我们使用合成的胶体银纳米粒子作为 SERS 基底,通过直接 SERS 传感方法分析 ssDNA 和 RNA 序列中的单碱基突变。然后,提出了一种基于 ML 的假设检验来识别这些变化,并将突变序列与相应的天然序列区分开来。这种基于 ML 的方法源于“功能数据分析”,充分利用了 SERS 光谱数据中的丰富信息和依赖性,以提高建模和检测能力。在包括 miR-21(一种已知的癌症 miRNA 生物标志物)在内的大量 DNA 和 RNA SERS 数据上进行测试,我们的方法被证明可以准确地区分来自不同寡核苷酸的 SERS 光谱,在几个性能指标上优于各种数据驱动方法,包括准确性、敏感性、特异性和 F1 分数。因此,这项工作代表了 SERS 和 ML 联合使用的一个进步,是疾病诊断的有效方法,在临床上具有实际应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验