School of Biomedical Sciences, Hunan University, Changsha, China.
Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.
Virology. 2024 Dec;600:110241. doi: 10.1016/j.virol.2024.110241. Epub 2024 Sep 10.
The global spread of COVID-19 remains a significant threat to human health. The SARS-CoV-2 BQ.1.1 lineage, including BA.5.2, BF.7, BQ.1 and BQ.1.1, caused a new soaring of infection cases due to rapid transmission. However, the receptor binding mechanism and immune evasion capacity of these variants need to be explored further. Our study found that while the BA.5.2, BF.7 and BQ.1.1 variants pseudovirus had similar cell entry efficiency, the BF.7 and BQ.1.1 RBD bound to human ACE2 (hACE2) with a slightly stronger affinity than the BA.5.2 RBD. Structural analysis revealed R346T, K444T, and N460K mutations altered RBD-hACE2 binding interface details and surface electrostatic potential of BQ.1.1 RBD. Serum neutralization tests showed BQ.1.1 variant had stronger immune evasion capacity than BA.5.2 and BF.7 variants. Our findings illustrated the receptor binding mechanism and serological neutralization activity of the BA.5.2, BF.7 and BQ.1.1 variants, which verified the necessity for further antibody therapy optimization and vaccination development.
新冠病毒在全球的传播仍然对人类健康构成重大威胁。SARS-CoV-2 的 BQ.1.1 谱系,包括 BA.5.2、BF.7、BQ.1 和 BQ.1.1,由于快速传播导致感染病例再次飙升。然而,这些变体的受体结合机制和免疫逃逸能力仍需进一步探索。我们的研究发现,虽然 BA.5.2、BF.7 和 BQ.1.1 假病毒具有相似的细胞进入效率,但 BF.7 和 BQ.1.1 的 RBD 与 hACE2 的结合亲和力略强于 BA.5.2 的 RBD。结构分析显示 R346T、K444T 和 N460K 突变改变了 BQ.1.1 RBD 与 hACE2 结合界面的细节和表面静电势。血清中和试验表明,BQ.1.1 变体比 BA.5.2 和 BF.7 变体具有更强的免疫逃逸能力。我们的研究结果阐明了 BA.5.2、BF.7 和 BQ.1.1 变体的受体结合机制和血清中和活性,这验证了进一步优化抗体治疗和疫苗开发的必要性。