Xue Xian, Sun Lining, Liang Dazhu, Zhu Jingyang, Liu Lele, Sun Quanfu, Liu Hefeng, Gao Jianwei, Fu Xiaosha, Ding Jingjing, Dai Xiangkun, Tao Laiyuan, Cheng Jinsheng, Li Tengxiang, Zhou Fugen
Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention (CDC), Beijing 100088, People's Republic of China.
Department of radiation oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.
Phys Med Biol. 2024 Sep 27;69(19). doi: 10.1088/1361-6560/ad7ad1.
To develop and evaluate a 3D Prompt-ResUNet module that utilized the prompt-based model combined with 3D nnUNet for rapid and consistent autosegmentation of high-risk clinical target volume (HRCTV) and organ at risk (OAR) in high-dose-rate brachytherapy for cervical cancer patients.We used 73 computed tomography scans and 62 magnetic resonance imaging scans from 135 (103 for training, 16 for validation, and 16 for testing) cervical cancer patients across two hospitals for HRCTV and OAR segmentation. A novel comparison of the deep learning neural networks 3D Prompt-ResUNet, nnUNet, and segment anything model-Med3D was applied for the segmentation. Evaluation was conducted in two parts: geometric and clinical assessments. Quantitative metrics included the Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (HD95%), Jaccard index (JI), and Matthews correlation coefficient (MCC). Clinical evaluation involved interobserver comparison, 4-grade expert scoring, and a double-blinded Turing test.The Prompt-ResUNet model performed most similarly to experienced radiation oncologists, outperforming less experienced ones. During testing, the DSC, HD95% (mm), JI, and MCC value (mean ± SD) for HRCTV were 0.92 ± 0.03, 2.91 ± 0.69, 0.85 ± 0.04, and 0.92 ± 0.02, respectively. For the bladder, these values were 0.93 ± 0.05, 3.07 ± 1.05, 0.87 ± 0.08, and 0.93 ± 0.05, respectively. For the rectum, they were 0.87 ± 0.03, 3.54 ± 1.46, 0.78 ± 0.05, and 0.87 ± 0.03, respectively. For the sigmoid, they were 0.76 ± 0.11, 7.54 ± 5.54, 0.63 ± 0.14, and 0.78 ± 0.09, respectively. The Prompt-ResUNet achieved a clinical viability score of at least 2 in all evaluation cases (100%) for both HRCTV and bladder and exceeded the 30% positive rate benchmark for all evaluated structures in the Turing test.The Prompt-ResUNet architecture demonstrated high consistency with ground truth in autosegmentation of HRCTV and OARs, reducing interobserver variability and shortening treatment times.
开发并评估一种3D Prompt-ResUNet模块,该模块将基于提示的模型与3D nnUNet相结合,用于对宫颈癌患者高剂量率近距离放射治疗中的高风险临床靶区(HRCTV)和危及器官(OAR)进行快速且一致的自动分割。我们使用了来自两家医院135例(103例用于训练,16例用于验证,16例用于测试)宫颈癌患者的73例计算机断层扫描和62例磁共振成像扫描,以进行HRCTV和OAR分割。对深度学习神经网络3D Prompt-ResUNet、nnUNet和分割一切模型-Med3D进行了新颖的比较,以用于分割。评估分两部分进行:几何评估和临床评估。定量指标包括骰子相似系数(DSC)、第95百分位数豪斯多夫距离(HD95%)(毫米)、杰卡德指数(JI)和马修斯相关系数(MCC)。临床评估包括观察者间比较、4级专家评分和双盲图灵测试。Prompt-ResUNet模型的表现与经验丰富的放射肿瘤学家最为相似,优于经验较少的放射肿瘤学家。在测试期间,HRCTV的DSC、HD95%(毫米)、JI和MCC值(均值±标准差)分别为0.92±0.03、2.91±0.69、0.85±0.04和0.92±0.02。膀胱的这些值分别为0.93±0.05、3.07±1.05、0.87±0.08和0.93±0.05。直肠的这些值分别为0.87±0.03、3.54±1.46、0.78±0.05和0.87±0.03。乙状结肠的这些值分别为0.76±0.1(此处原文有误,应为0.11)、7.54±5.54、0.63±0.14和0.78±0.09。Prompt-ResUNet在所有评估病例(100%)中,对于HRCTV和膀胱均获得了至少为2的临床可行性评分,并且在图灵测试中超过了所有评估结构30%的阳性率基准。Prompt-ResUNet架构在HRCTV和OAR的自动分割中与真实情况具有高度一致性,减少了观察者间的变异性并缩短了治疗时间。