Suppr超能文献

基于深度学习的自适应集成方法在妇科近距离放射治疗中的分割。

A deep learning-based self-adapting ensemble method for segmentation in gynecological brachytherapy.

机构信息

Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Xuhui District, Shanghai, China.

出版信息

Radiat Oncol. 2022 Sep 5;17(1):152. doi: 10.1186/s13014-022-02121-3.

Abstract

PURPOSE

Fast and accurate outlining of the organs at risk (OARs) and high-risk clinical tumor volume (HRCTV) is especially important in high-dose-rate brachytherapy due to the highly time-intensive online treatment planning process and the high dose gradient around the HRCTV. This study aims to apply a self-configured ensemble method for fast and reproducible auto-segmentation of OARs and HRCTVs in gynecological cancer.

MATERIALS AND METHODS

We applied nnU-Net (no new U-Net), an automatically adapted deep convolutional neural network based on U-Net, to segment the bladder, rectum and HRCTV on CT images in gynecological cancer. In nnU-Net, three architectures, including 2D U-Net, 3D U-Net and 3D-Cascade U-Net, were trained and finally ensembled. 207 cases were randomly chosen for training, and 30 for testing. Quantitative evaluation used well-established image segmentation metrics, including dice similarity coefficient (DSC), 95% Hausdorff distance (HD95%), and average surface distance (ASD). Qualitative analysis of automated segmentation results was performed visually by two radiation oncologists. The dosimetric evaluation was performed by comparing the dose-volume parameters of both predicted segmentation and human contouring.

RESULTS

nnU-Net obtained high qualitative and quantitative segmentation accuracy on the test dataset and performed better than previously reported methods in bladder and rectum segmentation. In quantitative evaluation, 3D-Cascade achieved the best performance in the bladder (DSC: 0.936 ± 0.051, HD95%: 3.503 ± 1.956, ASD: 0.944 ± 0.503), rectum (DSC: 0.831 ± 0.074, HD95%: 7.579 ± 5.857, ASD: 3.6 ± 3.485), and HRCTV (DSC: 0.836 ± 0.07, HD95%: 7.42 ± 5.023, ASD: 2.094 ± 1.311). According to the qualitative evaluation, over 76% of the test data set had no or minor visually detectable errors in segmentation.

CONCLUSION

This work showed nnU-Net's superiority in segmenting OARs and HRCTV in gynecological brachytherapy cases in our center, among which 3D-Cascade shows the highest accuracy in segmentation across different applicators and patient anatomy.

摘要

目的

在高剂量率近距离放射治疗中,由于在线治疗计划过程时间密集且 HRCTV 周围剂量梯度高,因此快速准确地勾画危及器官 (OAR) 和高危临床肿瘤体积 (HRCTV) 尤为重要。本研究旨在应用自配置集成方法快速、可重复地对妇科癌症中的 OAR 和 HRCTV 进行自动分割。

材料和方法

我们应用了 nnU-Net(无新 U-Net),这是一种基于 U-Net 的自动自适应深度卷积神经网络,用于分割妇科癌症 CT 图像中的膀胱、直肠和 HRCTV。在 nnU-Net 中,训练了三种架构,包括 2D U-Net、3D U-Net 和 3D-Cascade U-Net,最后进行了集成。随机选择 207 例进行训练,30 例进行测试。使用成熟的图像分割度量标准进行定量评估,包括 Dice 相似系数 (DSC)、95%Hausdorff 距离 (HD95%) 和平均表面距离 (ASD)。通过两位放射肿瘤学家进行视觉评估自动分割结果的定性分析。通过比较预测分割和人工勾画的剂量-体积参数进行剂量评估。

结果

nnU-Net 在测试数据集上获得了较高的定性和定量分割准确性,并且在膀胱和直肠分割方面优于先前报道的方法。在定量评估中,3D-Cascade 在膀胱(DSC:0.936±0.051,HD95%:3.503±1.956,ASD:0.944±0.503)、直肠(DSC:0.831±0.074,HD95%:7.579±5.857,ASD:3.6±3.485)和 HRCTV(DSC:0.836±0.07,HD95%:7.42±5.023,ASD:2.094±1.311)方面表现出最佳性能。根据定性评估,超过 76%的测试数据集在分割中没有或只有轻微的可察觉错误。

结论

本工作表明 nnU-Net 在我们中心的妇科近距离放射治疗病例中分割 OAR 和 HRCTV 方面具有优势,其中 3D-Cascade 在不同施源器和患者解剖结构方面表现出最高的分割精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a78/9446699/c6817edb9999/13014_2022_2121_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验