Suppr超能文献

一种用于大流行传播和不确定性预测的有效漂移扩散模型。

An effective drift-diffusion model for pandemic propagation and uncertainty prediction.

作者信息

Bender Clara, Ghosh Abhimanyu, Vakili Hamed, Ghosh Preetam, Ghosh Avik W

机构信息

Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia.

Poolesville High School, Poolesville, Maryland.

出版信息

Biophys Rep (N Y). 2024 Dec 11;4(4):100182. doi: 10.1016/j.bpr.2024.100182. Epub 2024 Sep 11.

Abstract

Predicting pandemic evolution involves complex modeling challenges, typically involving detailed discrete mathematics executed on large volumes of epidemiological data. Making them physics based provides added intuition as well as predictive value. Differential equations have the advantage of offering smooth, well-behaved solutions that try to capture overall predictive trends and averages. In this paper, the canonical susceptible-infected-recovered model is simplified, in the process generating quasi-analytical solutions and fitting functions that agree well with the numerics, as well as infection data across multiple countries. The equations provide an elegant way to visualize the evolution of the pandemic spread, by drawing equivalents with the similar dynamics of a particle, whose location over time represents the growing fraction of the population that is infected. This particle slides down a potential whose shape is set by model epidemiological parameters such as reproduction rate. Potential sources of errors and their growth over time are identified, and the uncertainties are mapped into a diffusive jitter that tends to push the particle away from its minimum. The combined physical understanding and analytical expressions offered by such an intuitive drift-diffusion model sets the foundation for their eventual extension to a multi-patch model while offering practical error bounds and could thus be useful in making policy decisions going forward.

摘要

预测大流行的演变涉及复杂的建模挑战,通常需要对大量流行病学数据进行详细的离散数学运算。基于物理学进行建模不仅能提供额外的直观感受,还具有预测价值。微分方程的优势在于能给出平滑、表现良好的解,试图捕捉总体预测趋势和平均值。在本文中,经典的易感-感染-康复模型被简化,在此过程中生成了与数值以及多个国家的感染数据吻合良好的准解析解和拟合函数。这些方程提供了一种优雅的方式来可视化大流行传播的演变,通过将其与粒子的类似动态进行类比,粒子随时间的位置代表感染人群比例的增长。这个粒子沿着一个由繁殖率等模型流行病学参数设定形状的势下滑。识别了潜在的误差源及其随时间的增长,并将不确定性映射为一种扩散抖动,这种抖动往往会将粒子推离其最小值。这种直观的漂移-扩散模型所提供的综合物理理解和解析表达式,为最终扩展到多区域模型奠定了基础,同时提供了实际的误差范围,因此可能有助于未来的政策决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7736/11775906/a96d05654a10/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验