Suppr超能文献

CRISETR:一种用于生物合成基因簇的多路复制定向进化的高效技术。

CRISETR: an efficient technology for multiplexed refactoring of biosynthetic gene clusters.

机构信息

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.

Department of Cell Biology, College of Life Science, Sichuan Normal University, Chengdu, Sichuan, 610101, P.R. China.

出版信息

Nucleic Acids Res. 2024 Oct 14;52(18):11378-11393. doi: 10.1093/nar/gkae781.

Abstract

The efficient refactoring of natural product biosynthetic gene clusters (BGCs) for activating silent BGCs is a central challenge for the discovery of new bioactive natural products. Herein, we have developed a simple and robust CRISETR (CRISPR/Cas9 and RecET-mediated Refactoring) technique, combining clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 and RecET, for the multiplexed refactoring of natural product BGCs. By this approach, natural product BGCs can be refactored through the synergistic interaction between RecET-mediated efficient homologous recombination and the CRISPR/Cas9 system. We first performed a proof-of-concept validation of the ability of CRISETR, and CRISETR can achieve simultaneous replacement of four promoter sites and marker-free replacement of single promoter site in natural product BGCs. Subsequently, we applied CRISETR to the promoter engineering of the 74-kb daptomycin BGC containing a large number of direct repeat sequences for enhancing the heterologous production of daptomycin. We used combinatorial design to build multiple refactored daptomycin BGCs with diverse combinations of promoters different in transcriptional strengths, and the yield of daptomycin was improved 20.4-fold in heterologous host Streptomyces coelicolor A3(2). In general, CRISETR exhibits enhanced tolerance to repetitive sequences within gene clusters, enabling efficient refactoring of diverse and complex BGCs, which would greatly accelerate discovery of novel bioactive metabolites present in microorganism.

摘要

高效重构天然产物生物合成基因簇(BGCs)以激活沉默 BGCs 是发现新生物活性天然产物的核心挑战。在此,我们开发了一种简单而强大的 CRISETR(CRISPR/Cas9 和 RecET 介导的重构)技术,结合了成簇规律间隔短回文重复序列(CRISPR)/Cas9 和 RecET,用于天然产物 BGC 的多路重构。通过这种方法,天然产物 BGC 可以通过 RecET 介导的高效同源重组与 CRISPR/Cas9 系统的协同作用进行重构。我们首先验证了 CRISETR 的能力,CRISETR 可以同时替换天然产物 BGC 中的四个启动子位点,并且可以在没有标记的情况下替换单个启动子位点。随后,我们将 CRISETR 应用于含有大量直接重复序列的 74kb 达托霉素 BGC 的启动子工程,以增强达托霉素的异源生产。我们使用组合设计构建了多个重构的达托霉素 BGC,这些 BGC 具有不同转录强度的不同启动子的多种组合,在异源宿主变铅青链霉菌 A3(2)中的达托霉素产量提高了 20.4 倍。总的来说,CRISETR 对基因簇内的重复序列具有增强的耐受性,能够高效重构多样化和复杂的 BGC,这将极大地加速发现微生物中存在的新型生物活性代谢物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0634/11472037/26b4a9232015/gkae781figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验