Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
Metab Eng. 2022 Jan;69:40-49. doi: 10.1016/j.ymben.2021.10.013. Epub 2021 Nov 2.
Secondary metabolites are produced at low titers by native producers due to tight regulations of their productions in response to environmental conditions. Synthetic biology provides a rational engineering principle for transcriptional optimization of secondary metabolite BGCs (biosynthetic gene clusters). Here, we demonstrate the use of synthetic biology principles for the development of a high-titer strain of the clinically important antibiotic daptomycin. Due to the presence of large NRPS (non-ribosomal peptide synthetase) genes with multiple direct repeats, we employed a top-down approach that allows transcriptional optimization of genes in daptomycin BGC with the minimum inputs of synthetic DNAs. The repeat-free daptomycin BGC was created through partial codon-reprogramming of a NRPS gene and cloned into a shuttle BAC vector, allowing BGC refactoring in a host with a powerful recombination system. Then, transcriptions of functionally divided operons were sequentially optimized through three rounds of DBTL (design-build-test-learn) cycles that resulted in up to ~2300% improvement in total lipopeptide titers compared to the wild-type strain. Upon decanoic acid feeding, daptomycin accounted for ∼ 40% of total lipopeptide production. To the best of our knowledge, this is the highest improvement of daptomycin titer ever achieved through genetic engineering of S. roseosporus. The top-down engineering approach we describe here could be used as a general strategy for the development of high-titer industrial strains of secondary metabolites produced by BGCs containing genes of large multi-modular NRPS and PKS enzymes.
次生代谢产物的产量通常很低,这是由于其在受到环境条件影响时会受到严格的调控。合成生物学为次生代谢产物生物合成基因簇(BGC)的转录优化提供了合理的工程原理。在这里,我们展示了如何利用合成生物学原理来开发临床上重要的抗生素达托霉素的高产菌株。由于存在多个具有多个直接重复的大型 NRPS(非核糖体肽合成酶)基因,我们采用了自上而下的方法,允许在达托霉素 BGC 中对基因进行转录优化,所需的合成 DNA 最少。通过对 NRPS 基因进行部分密码子重编程并将无重复的达托霉素 BGC 克隆到穿梭 BAC 载体中,从而可以在具有强大重组系统的宿主中进行 BGC 重构。然后,通过三轮 DBTL(设计-构建-测试-学习)循环,对功能划分的操纵子进行转录优化,与野生型菌株相比,总脂肽产量提高了约 2300%。在癸酸喂养的情况下,达托霉素占总脂肽产量的约 40%。据我们所知,这是通过基因工程改造玫瑰孢链霉菌来提高达托霉素产量的最高纪录。我们在这里描述的自上而下的工程方法可以作为一种通用策略,用于开发包含大型多模块 NRPS 和 PKS 酶基因的 BGC 产生的次生代谢产物的高产工业菌株。