Suppr超能文献

BRN1 和 BRN2 在新皮层祖细胞中保守的转录调控驱动哺乳动物神经特化和新皮层扩张。

Conserved transcriptional regulation by BRN1 and BRN2 in neocortical progenitors drives mammalian neural specification and neocortical expansion.

机构信息

The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.

Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, 06032, USA.

出版信息

Nat Commun. 2024 Sep 14;15(1):8043. doi: 10.1038/s41467-024-52443-x.

Abstract

The neocortex varies in size and complexity among mammals due to the tremendous variability in the number and diversity of neuronal subtypes across species. The increased cellular diversity is paralleled by the expansion of the pool of neocortical progenitors and the emergence of indirect neurogenesis during brain evolution. The molecular pathways that control these biological processes and are disrupted in neurological disorders remain largely unknown. Here we show that the transcription factors BRN1 and BRN2 have an evolutionary conserved function in neocortical progenitors to control their proliferative capacity and the switch from direct to indirect neurogenesis. Functional studies in mice and ferrets show that BRN1/2 act in concert with NOTCH and primary microcephaly genes to regulate progenitor behavior. Analysis of transcriptomics data from genetically modified macaques provides evidence that these molecular pathways are conserved in non-human primates. Our findings thus demonstrate that BRN1/2 are central regulators of gene expression programs in neocortical progenitors critical to determine brain size during evolution.

摘要

由于不同物种神经元亚型的数量和多样性存在巨大差异,新皮层的大小和复杂性在哺乳动物中有所不同。随着细胞多样性的增加,新皮层祖细胞的数量也在增加,并且在大脑进化过程中出现了间接神经发生。控制这些生物学过程的分子途径以及在神经疾病中被破坏的分子途径在很大程度上仍然未知。在这里,我们表明,转录因子 BRN1 和 BRN2 在新皮层祖细胞中具有进化保守的功能,可控制其增殖能力和从直接神经发生到间接神经发生的转变。在小鼠和雪貂中的功能研究表明,BRN1/2 与 NOTCH 和原发性小头畸形基因协同作用,调节祖细胞的行为。对经过基因改造的猕猴转录组学数据的分析提供了证据,证明这些分子途径在非人类灵长类动物中是保守的。因此,我们的研究结果表明,BRN1/2 是新皮层祖细胞中关键基因表达程序的核心调控因子,对于在进化过程中确定大脑大小至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2470/11399407/a7bf41e0e8aa/41467_2024_52443_Fig1_HTML.jpg

相似文献

3
Role for Lhx2 in corticogenesis through regulation of progenitor differentiation.
Mol Cell Neurosci. 2013 Sep;56:1-9. doi: 10.1016/j.mcn.2013.02.006. Epub 2013 Feb 26.
5
Gbx2 directly restricts Otx2 expression to forebrain and midbrain, competing with class III POU factors.
Mol Cell Biol. 2012 Jul;32(13):2618-27. doi: 10.1128/MCB.00083-12. Epub 2012 May 7.
6
A non-canonical role for the proneural gene as a negative regulator of neocortical neurogenesis.
Development. 2018 Oct 1;145(19):dev157719. doi: 10.1242/dev.157719.
7
Expression of Sox11 and Brn transcription factors during development and following transient forebrain ischemia in the rat.
Neurosci Lett. 2008 Mar 15;433(3):259-64. doi: 10.1016/j.neulet.2008.01.016. Epub 2008 Jan 16.
9
BRN1/2 Function in Neocortical Size Determination and Microcephaly.
bioRxiv. 2024 May 15:2023.11.02.565322. doi: 10.1101/2023.11.02.565322.
10
Zbtb20 promotes astrocytogenesis during neocortical development.
Nat Commun. 2016 Mar 22;7:11102. doi: 10.1038/ncomms11102.

引用本文的文献

2
A subpopulation of cortical neurons altered by mutations in the autism risk gene DDX3X.
Biol Open. 2025 Jan 15;14(1). doi: 10.1242/bio.061854. Epub 2025 Jan 29.
3
The chromatin remodeler ADNP regulates neurodevelopmental disorder risk genes and neocortical neurogenesis.
Proc Natl Acad Sci U S A. 2025 Jan 21;122(3):e2405981122. doi: 10.1073/pnas.2405981122. Epub 2025 Jan 14.
4
Syngap1 and the development of murine neocortical progenitor cells.
bioRxiv. 2024 Dec 20:2024.12.18.629233. doi: 10.1101/2024.12.18.629233.

本文引用的文献

1
Direct and indirect neurogenesis generate a mosaic of distinct glutamatergic projection neuron types in cerebral cortex.
Neuron. 2023 Aug 16;111(16):2557-2569.e4. doi: 10.1016/j.neuron.2023.05.021. Epub 2023 Jun 21.
2
De novo human brain enhancers created by single-nucleotide mutations.
Sci Adv. 2023 Feb 15;9(7):eadd2911. doi: 10.1126/sciadv.add2911.
3
as a key gene drives the early primate telencephalon development.
Sci Adv. 2022 Mar 4;8(9):eabl7263. doi: 10.1126/sciadv.abl7263.
4
Universal prediction of cell-cycle position using transfer learning.
Genome Biol. 2022 Jan 31;23(1):41. doi: 10.1186/s13059-021-02581-y.
5
Primary Cilia and Centrosomes in Neocortex Development.
Front Neurosci. 2021 Oct 21;15:755867. doi: 10.3389/fnins.2021.755867. eCollection 2021.
6
HES1 protein oscillations are necessary for neural stem cells to exit from quiescence.
iScience. 2021 Oct 2;24(10):103198. doi: 10.1016/j.isci.2021.103198. eCollection 2021 Oct 22.
8
Molecular logic of cellular diversification in the mouse cerebral cortex.
Nature. 2021 Jul;595(7868):554-559. doi: 10.1038/s41586-021-03670-5. Epub 2021 Jun 23.
9
Human intermediate progenitor diversity during cortical development.
Proc Natl Acad Sci U S A. 2021 Jun 29;118(26). doi: 10.1073/pnas.2019415118.
10
Neocortex expansion in development and evolution-from genes to progenitor cell biology.
Curr Opin Cell Biol. 2021 Dec;73:9-18. doi: 10.1016/j.ceb.2021.04.008. Epub 2021 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验