Suppr超能文献

人类皮质发育过程中的中间祖细胞多样性。

Human intermediate progenitor diversity during cortical development.

机构信息

Department of Neurology, University of California, San Francisco, CA 94143.

The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143.

出版信息

Proc Natl Acad Sci U S A. 2021 Jun 29;118(26). doi: 10.1073/pnas.2019415118.

Abstract

Studies of the spatiotemporal, transcriptomic, and morphological diversity of radial glia (RG) have spurred our current models of human corticogenesis. In the developing cortex, neural intermediate progenitor cells (nIPCs) are a neuron-producing transit-amplifying cell type born in the germinal zones of the cortex from RG. The potential diversity of the nIPC population, that produces a significant portion of excitatory cortical neurons, is understudied, particularly in the developing human brain. Here we explore the spatiotemporal, transcriptomic, and morphological variation that exists within the human nIPC population and provide a resource for future studies. We observe that the spatial distribution of nIPCs in the cortex changes abruptly around gestational week (GW) 19/20, marking a distinct shift in cellular distribution and organization during late neurogenesis. We also identify five transcriptomic subtypes, one of which appears at this spatiotemporal transition. Finally, we observe a diversity of nIPC morphologies that do not correlate with specific transcriptomic subtypes. These results provide an analysis of the spatiotemporal, transcriptional, and morphological diversity of nIPCs in developing brain tissue and provide an atlas of nIPC subtypes in the developing human cortex that can benchmark in vitro models of human development such as cerebral organoids and help inform future studies of how nIPCs contribute to cortical neurogenesis.

摘要

对放射状胶质细胞 (RG) 的时空、转录组和形态多样性的研究推动了我们目前对人类皮质发生的模型。在发育中的皮质中,神经中间前体细胞 (nIPC) 是一种产生神经元的过渡扩增细胞类型,从皮质的生发区由 RG 产生。nIPC 群体产生的潜在多样性,产生了相当一部分兴奋性皮质神经元,目前研究不足,特别是在发育中的人类大脑中。在这里,我们探索了人类 nIPC 群体中存在的时空转录组和形态变化,并为未来的研究提供了资源。我们观察到,nIPC 在皮质中的空间分布在孕龄 19/20 周左右突然发生变化,标志着神经发生后期细胞分布和组织的明显转变。我们还鉴定出五个转录组亚型,其中一个出现在这个时空转换中。最后,我们观察到 nIPC 形态的多样性与特定的转录组亚型不相关。这些结果提供了对发育中脑组织中 nIPC 的时空、转录和形态多样性的分析,并提供了发育中人类皮质中 nIPC 亚型的图谱,可作为脑类器官等体外人类发育模型的基准,并有助于了解 nIPC 如何促进皮质神经发生。

相似文献

1
Human intermediate progenitor diversity during cortical development.
Proc Natl Acad Sci U S A. 2021 Jun 29;118(26). doi: 10.1073/pnas.2019415118.
2
Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia.
Nat Neurosci. 2021 Apr;24(4):584-594. doi: 10.1038/s41593-020-00794-1. Epub 2021 Mar 15.
3
Progenitor genealogy in the developing cerebral cortex.
Cell Tissue Res. 2015 Jan;359(1):17-32. doi: 10.1007/s00441-014-1979-5. Epub 2014 Aug 21.
4
Characterization and identification of Sox2+ radial glia cells derived from rat embryonic cerebral cortex.
Histochem Cell Biol. 2011 Nov;136(5):515-26. doi: 10.1007/s00418-011-0864-5. Epub 2011 Sep 18.
7
The Primate-Specific Gene TMEM14B Marks Outer Radial Glia Cells and Promotes Cortical Expansion and Folding.
Cell Stem Cell. 2017 Nov 2;21(5):635-649.e8. doi: 10.1016/j.stem.2017.08.013. Epub 2017 Oct 12.
8
Molecular and cellular evolution of corticogenesis in amniotes.
Cell Mol Life Sci. 2020 Apr;77(8):1435-1460. doi: 10.1007/s00018-019-03315-x. Epub 2019 Sep 28.
9
Orchestration of Neuronal Differentiation and Progenitor Pool Expansion in the Developing Cortex by SoxC Genes.
J Neurosci. 2015 Jul 22;35(29):10629-42. doi: 10.1523/JNEUROSCI.1663-15.2015.

引用本文的文献

1
Molecular hallmarks of hydrocephalus.
Sci Transl Med. 2025 Jun 4;17(801):eadq1810. doi: 10.1126/scitranslmed.adq1810.
2
Development of GABAergic Interneurons in the Human Cerebral Cortex.
Eur J Neurosci. 2025 May;61(9):e70136. doi: 10.1111/ejn.70136.
4
Resolving the three-dimensional interactome of human accelerated regions during human and chimpanzee neurodevelopment.
Cell. 2025 Mar 20;188(6):1504-1523.e27. doi: 10.1016/j.cell.2025.01.007. Epub 2025 Jan 30.
5
Cell cycle-dependent cues regulate temporal patterning of the central brain neural stem cells.
bioRxiv. 2025 Jan 16:2025.01.16.629716. doi: 10.1101/2025.01.16.629716.
6
Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution.
Nat Methods. 2025 Feb;22(2):358-370. doi: 10.1038/s41592-024-02555-5. Epub 2024 Dec 9.
7
GPR37 and its neuroprotective mechanisms: bridging osteocalcin signaling and brain function.
Front Cell Dev Biol. 2024 Nov 20;12:1510666. doi: 10.3389/fcell.2024.1510666. eCollection 2024.
9
Stem cell-specific ecdysone signaling regulates the development of dorsal fan-shaped body neurons and sleep homeostasis.
Curr Biol. 2024 Nov 4;34(21):4951-4967.e5. doi: 10.1016/j.cub.2024.09.020. Epub 2024 Oct 8.
10
An interpretable deep learning framework identifies proteomic drivers of Alzheimer's disease.
Front Cell Dev Biol. 2024 Sep 17;12:1379984. doi: 10.3389/fcell.2024.1379984. eCollection 2024.

本文引用的文献

1
Single-cell transcriptome analysis reveals cell lineage specification in temporal-spatial patterns in human cortical development.
Sci Adv. 2020 Aug 21;6(34):eaaz2978. doi: 10.1126/sciadv.aaz2978. eCollection 2020 Aug.
2
Basal Progenitor Morphology and Neocortex Evolution.
Trends Neurosci. 2020 Nov;43(11):843-853. doi: 10.1016/j.tins.2020.07.009. Epub 2020 Aug 20.
3
Cell stress in cortical organoids impairs molecular subtype specification.
Nature. 2020 Feb;578(7793):142-148. doi: 10.1038/s41586-020-1962-0. Epub 2020 Jan 29.
4
A Single-Cell Transcriptomic Atlas of Human Neocortical Development during Mid-gestation.
Neuron. 2019 Sep 4;103(5):785-801.e8. doi: 10.1016/j.neuron.2019.06.011. Epub 2019 Jul 11.
5
Gliogenesis in the outer subventricular zone promotes enlargement and gyrification of the primate cerebrum.
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):7089-7094. doi: 10.1073/pnas.1822169116. Epub 2019 Mar 20.
6
Comparison of clustering tools in R for medium-sized 10x Genomics single-cell RNA-sequencing data.
F1000Res. 2018 Aug 15;7:1297. doi: 10.12688/f1000research.15809.2. eCollection 2018.
7
Interactive histogenesis of axonal strata and proliferative zones in the human fetal cerebral wall.
Brain Struct Funct. 2018 Dec;223(9):3919-3943. doi: 10.1007/s00429-018-1721-2. Epub 2018 Aug 9.
8
Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex.
Science. 2017 Dec 8;358(6368):1318-1323. doi: 10.1126/science.aap8809.
10
Growth of Thalamocortical Fibers to the Somatosensory Cortex in the Human Fetal Brain.
Front Neurosci. 2017 Apr 27;11:233. doi: 10.3389/fnins.2017.00233. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验