Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna, Austria.
Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria.
Commun Biol. 2024 Sep 13;7(1):1139. doi: 10.1038/s42003-024-06772-8.
With recent advances in multi-color super-resolution light microscopy, it is possible to simultaneously visualize multiple subunits within biological structures at nanometer resolution. To optimally evaluate and interpret spatial proximity of stainings on such an image, colocalization analysis tools have to be able to integrate prior knowledge on the local geometry of the recorded biological complex. We present MultiMatch to analyze the abundance and location of chain-like particle arrangements in multi-color microscopy based on multi-marginal optimal unbalanced transport methodology. Our object-based colocalization model statistically addresses the effect of incomplete labeling efficiencies enabling inference on existent, but not fully observable particle chains. We showcase that MultiMatch is able to consistently recover existing chain structures in three-color STED images of DNA origami nanorulers and outperforms geometry-uninformed triplet colocalization methods in this task. MultiMatch generalizes to an arbitrary number of color channels and is provided as a user-friendly Python package comprising colocalization visualizations.
随着多色超分辨率荧光显微镜技术的最新进展,已经可以在纳米分辨率下同时可视化生物结构内的多个亚基。为了在这种图像上最佳地评估和解释染色的空间接近度,共定位分析工具必须能够整合关于记录的生物复合物局部几何形状的先验知识。我们提出了 MultiMatch 来分析基于多边缘最优不平衡传输方法的多色显微镜中链状粒子排列的丰度和位置。我们基于对象的共定位模型从统计学上解决了不完全标记效率的影响,从而能够对存在但不完全可观察的粒子链进行推断。我们展示了 MultiMatch 能够一致地恢复 DNA 折纸纳米尺的三色 STED 图像中现有的链结构,并且在这项任务中优于几何信息不足的三重共定位方法。MultiMatch 可推广到任意数量的颜色通道,并作为一个用户友好的 Python 包提供,其中包括共定位可视化。