Suppr超能文献

慢性肺源性心脏病急性发作的预测:Holt-Winters 指数平滑法和 ARIMA 模型的对比分析。

Prediction of acute onset of chronic cor pulmonale: comparative analysis of Holt-Winters exponential smoothing and ARIMA model.

机构信息

Chenggong Hospital of Kunming Yan'an Hospital, Kunming, China.

Kunming Guandu District Center for Disease Control, Kunming, China.

出版信息

BMC Med Res Methodol. 2024 Sep 13;24(1):204. doi: 10.1186/s12874-024-02325-z.

Abstract

BACKGROUND

The aim of this study is to analyze the trend of acute onset of chronic cor pulmonale at Chenggong Hospital of Kunming Yan'an Hospital between January 2018 and December 2022.Additionally, the study will compare the application of the ARIMA model and Holt-Winters model in predicting the number of chronic cor pulmonale cases.

METHODS

The data on chronic cor pulmonale cases from 2018 to 2022 were collected from the electronic medical records system of Chenggong Hospital of Kunming Yan'an Hospital. The ARIMA and Holt-Winters models were constructed using monthly case numbers from January 2018 to December 2022 as training data. The performance of the model was tested using the monthly number of cases from January 2023 to December 2023 as the test set.

RESULTS

The number of acute onset of chronic cor pulmonale in Chenggong Hospital of Kunming Yan'an Hospital exhibited a downward trend overall from 2018 to 2022. There were more cases in winter and spring, with peaks observed in November to December and January of the following year. The optimal ARIMA model was determined to be ARIMA (0,1,1) (0,1,1), while for the Holt-Winters model, the optimal choice was the Holt-Winters multiplicative model. It was found that the Holt-Winters multiplicative model yielded the lowest error.

CONCLUSION

The Holt-Winters multiplicative model predicts better accuracy. The diagnosis of acute onset of chronic cor pulmonale is related to many risk factors, therefore, when using temporal models to fit and predict the data, we must consider such factors' influence and try to incorporate them into the models.

摘要

背景

本研究旨在分析昆明延安医院呈贡医院 2018 年 1 月至 2022 年 12 月慢性肺源性心脏病急性发作的趋势,并比较 ARIMA 模型和 Holt-Winters 模型在预测慢性肺源性心脏病病例数中的应用。

方法

收集 2018 年至 2022 年慢性肺源性心脏病病例的电子病历系统数据。使用 2018 年 1 月至 2022 年 12 月的每月病例数作为训练数据,构建 ARIMA 和 Holt-Winters 模型。使用 2023 年 1 月至 2023 年 12 月的每月病例数作为测试集,测试模型的性能。

结果

昆明延安医院呈贡医院慢性肺源性心脏病急性发作的病例数总体呈下降趋势。冬季和春季病例较多,峰值出现在 11 月至 12 月和次年 1 月。最佳的 ARIMA 模型是 ARIMA(0,1,1)(0,1,1),而对于 Holt-Winters 模型,最佳选择是 Holt-Winters 乘法模型。发现 Holt-Winters 乘法模型的误差最低。

结论

Holt-Winters 乘法模型预测精度更高。慢性肺源性心脏病急性发作的诊断与许多风险因素有关,因此,在使用时间序列模型对数据进行拟合和预测时,必须考虑这些因素的影响,并尝试将其纳入模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9555/11395557/286bc18132e0/12874_2024_2325_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验