Suppr超能文献

通过先进的人工智能驱动超声技术增强乳腺癌检测:对Vis-BUS的全面评估

Enhancing Breast Cancer Detection through Advanced AI-Driven Ultrasound Technology: A Comprehensive Evaluation of Vis-BUS.

作者信息

Kwon Hyuksool, Oh Seok Hwan, Kim Myeong-Gee, Kim Youngmin, Jung Guil, Lee Hyeon-Jik, Kim Sang-Yun, Bae Hyeon-Min

机构信息

Laboratory of Quantitative Ultrasound Imaging, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.

Imaging Division, Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.

出版信息

Diagnostics (Basel). 2024 Aug 26;14(17):1867. doi: 10.3390/diagnostics14171867.

Abstract

This study aims to enhance breast cancer detection accuracy through an AI-driven ultrasound tool, Vis-BUS, developed by Barreleye Inc., Seoul, South Korea. Vis-BUS incorporates Lesion Detection AI (LD-AI) and Lesion Analysis AI (LA-AI), along with a Cancer Probability Score (CPS), to differentiate between benign and malignant breast lesions. A retrospective analysis was conducted on 258 breast ultrasound examinations to evaluate Vis-BUS's performance. The primary methods included the application of LD-AI and LA-AI to b-mode ultrasound images and the generation of CPS for each lesion. Diagnostic accuracy was assessed using metrics such as the Area Under the Receiver Operating Characteristic curve (AUROC) and the Area Under the Precision-Recall curve (AUPRC). The study found that Vis-BUS achieved high diagnostic accuracy, with an AUROC of 0.964 and an AUPRC of 0.967, indicating its effectiveness in distinguishing between benign and malignant lesions. Logistic regression analysis identified that 'Fatty' lesion density had an extremely high odds ratio (OR) of 27.7781, suggesting potential convergence issues. The 'Unknown' density category had an OR of 0.3185, indicating a lower likelihood of correct classification. Medium and large lesion sizes were associated with lower likelihoods of correct classification, with ORs of 0.7891 and 0.8014, respectively. The presence of microcalcifications showed an OR of 1.360. Among Breast Imaging-Reporting and Data System categories, category C5 had a significantly higher OR of 10.173, reflecting a higher likelihood of correct classification. Vis-BUS significantly improves diagnostic precision and supports clinical decision-making in breast cancer screening. However, further refinement is needed in areas like lesion density characterization and calcification detection to optimize its performance.

摘要

本研究旨在通过韩国首尔的Barreleye公司开发的人工智能驱动的超声工具Vis-BUS提高乳腺癌检测的准确性。Vis-BUS结合了病变检测人工智能(LD-AI)和病变分析人工智能(LA-AI)以及癌症概率评分(CPS),以区分乳腺良性和恶性病变。对258例乳腺超声检查进行了回顾性分析,以评估Vis-BUS的性能。主要方法包括将LD-AI和LA-AI应用于B模式超声图像,并为每个病变生成CPS。使用受试者操作特征曲线下面积(AUROC)和精确召回曲线下面积(AUPRC)等指标评估诊断准确性。研究发现,Vis-BUS具有较高的诊断准确性,AUROC为0.964,AUPRC为0.967,表明其在区分良性和恶性病变方面的有效性。逻辑回归分析表明,“脂肪”病变密度的优势比(OR)极高,为27.7781,表明可能存在收敛问题。“未知”密度类别得OR为0.3185,表明正确分类的可能性较低。中等和大尺寸病变与正确分类的可能性较低相关,OR分别为0.7891和0.8014。微钙化的存在显示OR为1.360。在乳腺影像报告和数据系统类别中,C5类别的OR显著更高,为10.173,反映出正确分类的可能性更高。Vis-BUS显著提高了诊断精度,并支持乳腺癌筛查中的临床决策。然而,在病变密度特征描述和钙化检测等方面需要进一步改进,以优化其性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验