Memorial Sloan Kettering Cancer Center, Breast and Imaging Center, 300 E 66th St, Ste 715, New York, NY 10065.
Department of Radiology, Columbia University Medical Center, New York, NY.
AJR Am J Roentgenol. 2020 Jun;214(6):1445-1452. doi: 10.2214/AJR.19.21872. Epub 2020 Apr 22.
The objective of this study was to assess the impact of artificial intelligence (AI)-based decision support (DS) on breast ultrasound (US) lesion assessment. A multicenter retrospective review of 900 breast lesions (470/900 [52.2%] benign; 430/900 [47.8%] malignant) on US by 15 physicians (11 radiologists, two surgeons, two obstetrician/gynecologists). An AI system (Koios DS for Breast, Koios Medical) evaluated images and assigned them to one of four categories: benign, probably benign, suspicious, and probably malignant. Each reader reviewed cases twice: 750 cases with US only or with US plus DS; 4 weeks later, cases were reviewed in the opposite format. One hundred fifty additional cases were presented identically in each session. DS and reader sensitivity, specificity, and positive likelihood ratios (PLRs) were calculated as well as reader AUCs with and without DS. The Kendall τ-b correlation coefficient was used to assess intraand interreader variability. Mean reader AUC for cases reviewed with US only was 0.83 (95% CI, 0.78-0.89); for cases reviewed with US plus DS, mean AUC was 0.87 (95% CI, 0.84-0.90). PLR for the DS system was 1.98 (95% CI, 1.78-2.18) and was higher than the PLR for all readers but one. Fourteen readers had better AUC with US plus DS than with US only. Mean Kendall τ-b for US-only interreader variability was 0.54 (95% CI, 0.53-0.55); for US plus DS, it was 0.68 (95% CI, 0.67-0.69). Intrareader variability improved with DS; class switching (defined as crossing from BI-RADS category 3 to BI-RADS category 4A or above) occurred in 13.6% of cases with US only versus 10.8% of cases with US plus DS ( = 0.04). AI-based DS improves accuracy of sonographic breast lesion assessment while reducing inter- and intraobserver variability.
本研究旨在评估基于人工智能(AI)的决策支持(DS)对乳腺超声(US)病变评估的影响。对 15 名医生(11 名放射科医生、2 名外科医生、2 名妇产科医生)进行的 900 例乳腺病变(470/900 [52.2%] 良性;430/900 [47.8%] 恶性)的多中心回顾性研究。AI 系统(Koios DS for Breast,Koios Medical)评估图像并将其分配到四个类别之一:良性、可能良性、可疑和可能恶性。每位读者两次阅读病例:750 例仅接受 US 检查或 US 加 DS 检查;4 周后,以相反的格式检查病例。在每个会议中,还以相同的方式呈现 150 例额外的病例。计算了 DS 和读者的敏感性、特异性和阳性似然比(PLR),以及有和没有 DS 的读者 AUC。使用 Kendall τ-b 相关系数评估读者内和读者间的变异性。仅使用 US 检查的病例的平均读者 AUC 为 0.83(95%CI,0.78-0.89);使用 US 加 DS 检查的病例的平均 AUC 为 0.87(95%CI,0.84-0.90)。DS 系统的 PLR 为 1.98(95%CI,1.78-2.18),高于除一名读者外的所有读者的 PLR。14 名读者使用 US 加 DS 的 AUC 优于仅使用 US。仅使用 US 的读者间变异性的平均 Kendall τ-b 为 0.54(95%CI,0.53-0.55);使用 US 加 DS 的变异性为 0.68(95%CI,0.67-0.69)。使用 DS 后,读者内变异性得到改善;仅使用 US 时,分类转换(定义为从 BI-RADS 类别 3 转为 BI-RADS 类别 4A 或更高)的发生率为 13.6%,而使用 US 加 DS 的发生率为 10.8%( = 0.04)。基于 AI 的 DS 提高了超声乳腺病变评估的准确性,同时降低了观察者间和观察者内的变异性。