Suppr超能文献

基于多重生物网络的多点重启随机游走鉴定水稻干旱胁迫响应基因

Identification of Drought Stress-Responsive Genes in Rice by Random Walk with Multi-Restart Probability on MultiPlex Biological Networks.

机构信息

College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China.

College of Science, Central South University of Forestry and Technology, Changsha 410004, China.

出版信息

Int J Mol Sci. 2024 Aug 25;25(17):9216. doi: 10.3390/ijms25179216.

Abstract

Exploring drought stress-responsive genes in rice is essential for breeding drought-resistant varieties. Rice drought resistance is controlled by multiple genes, and mining drought stress-responsive genes solely based on single omics data lacks stability and accuracy. Multi-omics correlation analysis and biological molecular network analysis provide robust solutions. This study proposed a random walk with a multi-restart probability (RWMRP) algorithm, based on the Restarted Random Walk (RWR) algorithm, to operate on rice MultiPlex biological networks. It explores the interactions between biological molecules across various levels and ranks potential genes. RWMRP uses eigenvector centrality to evaluate node importance in the network and adjusts the restart probabilities accordingly, diverging from the uniform restart probability employed in RWR. In the random walk process, it can be better to consider the global relationships in the network. Firstly, we constructed a MultiPlex biological network by integrating the rice protein-protein interaction, gene pathway, and gene co-expression network. Then, we employed RWMRP to predict the potential genes associated with rice tolerance to drought stress. Enrichment and correlation analyses resulted in the identification of 12 drought-related genes. We further conducted quantitative real-time polymerase chain reaction (qRT-PCR) analysis on these 12 genes, ultimately identifying 10 genes responsive to drought stress.

摘要

探索水稻中的干旱胁迫响应基因对于培育抗旱品种至关重要。水稻的抗旱性受多个基因控制,仅基于单一组学数据挖掘干旱胁迫响应基因缺乏稳定性和准确性。多组学关联分析和生物分子网络分析提供了可靠的解决方案。本研究提出了一种基于重新启动随机游走(RWR)算法的随机游走多重启概率(RWMRP)算法,用于操作水稻多 plex 生物网络。它探索了不同层次生物分子之间的相互作用,并对潜在基因进行了排名。RWMRP 使用特征向量中心度来评估网络中节点的重要性,并相应地调整重新启动概率,与 RWR 中使用的均匀重新启动概率不同。在随机游走过程中,可以更好地考虑网络中的全局关系。首先,我们通过整合水稻蛋白质-蛋白质相互作用、基因途径和基因共表达网络构建了一个多 plex 生物网络。然后,我们采用 RWMRP 预测与水稻耐旱性相关的潜在基因。富集和相关性分析确定了 12 个与干旱相关的基因。我们进一步对这 12 个基因进行了定量实时聚合酶链反应(qRT-PCR)分析,最终鉴定出 10 个对干旱胁迫有反应的基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37e5/11395135/bb190429ffa9/ijms-25-09216-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验