Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Kagawa, Japan.
Institute of Neuroscience, Tokushima Bunri University, Sanuki 769-2193, Kagawa, Japan.
Int J Mol Sci. 2024 Sep 6;25(17):9674. doi: 10.3390/ijms25179674.
The maintenance of proper brain function relies heavily on the balance of excitatory and inhibitory neural circuits, governed in part by synaptic adhesion molecules. Among these, MDGA1 (MAM domain-containing glycosylphosphatidylinositol anchor 1) acts as a suppressor of synapse formation by interfering with Neuroligin-mediated interactions, crucial for maintaining the excitatory-inhibitory (E/I) balance. mice exhibit selectively enhanced inhibitory synapse formation in their hippocampal pyramidal neurons, leading to impaired hippocampal long-term potentiation (LTP) and hippocampus-dependent learning and memory function; however, it has not been fully investigated yet if the reduction in MDGA1 protein levels would alter brain function. Here, we examined the behavioral and synaptic consequences of reduced MDGA1 protein levels in mice. As observed in mice, mice exhibited significant deficits in hippocampus-dependent learning and memory tasks, such as the Morris water maze and contextual fear-conditioning tests, along with a significant deficit in the long-term potentiation (LTP) in hippocampal Schaffer collateral CA1 synapses. The acute administration of D-cycloserine, a co-agonist of NMDAR (N-methyl-d-aspartate receptor), significantly ameliorated memory impairments and restored LTP deficits specifically in mice, while having no such effect on mice. These results highlight the critical role of MDGA1 in regulating inhibitory synapse formation and maintaining the E/I balance for proper cognitive function. These findings may also suggest potential therapeutic strategies targeting the E/I imbalance to alleviate cognitive deficits associated with neuropsychiatric disorders.
大脑功能的正常维持在很大程度上依赖于兴奋和抑制性神经回路的平衡,而这种平衡部分受到突触黏附分子的调控。其中,MDGA1(富含 MAM 结构域的糖基磷脂酰肌醇锚定蛋白 1)通过干扰神经黏附素介导的相互作用,作为突触形成的抑制剂发挥作用,这种相互作用对于维持兴奋性-抑制性(E/I)平衡至关重要。MDGA1 敲除小鼠表现出海马锥体神经元中抑制性突触形成的选择性增强,导致海马长时程增强(LTP)和海马依赖的学习记忆功能受损;然而,MDGA1 蛋白水平的降低是否会改变大脑功能尚未得到充分研究。在这里,我们研究了 MDGA1 蛋白水平降低对 MDGA1 敲除小鼠的行为和突触后果。与 MDGA1 敲除小鼠一样,MDGA1 敲入小鼠在海马依赖的学习和记忆任务(如 Morris 水迷宫和情境恐惧条件反射测试)中表现出明显的缺陷,同时在海马 Schaffer 侧支 CA1 突触的长时程增强(LTP)中也存在明显的缺陷。N-甲基-D-天冬氨酸受体(NMDAR)共激动剂 D-环丝氨酸的急性给药显著改善了记忆缺陷,并特异性地恢复了 MDGA1 敲入小鼠的 LTP 缺陷,而对 MDGA1 敲除小鼠没有这种作用。这些结果突出了 MDGA1 在调节抑制性突触形成和维持 E/I 平衡以实现正常认知功能中的关键作用。这些发现还可能提示针对 E/I 失衡的潜在治疗策略,以减轻与神经精神障碍相关的认知缺陷。