Ibnaouf Khalid H, Alsadig Ahmed, Idriss Hajo, Ibrahem Moez A, Cabrera Humberto
Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia.
Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
Polymers (Basel). 2024 Aug 26;16(17):2420. doi: 10.3390/polym16172420.
How plasmonic nanostructures modulate the behavior of exciplexes and excimers within materials remains unclear. Thus, advanced knowledge is essential to bridge this gap for the development of optoelectronic devices that leverage the interplay between plasmonic and conjugated polymer hybrid materials. Herein, this work aims to explore the role of gold nanoparticles (AuNPs) in modulating exciplex and excimer states within the conjugated polymer poly(2,5-di(3,7-dimethyloctyloxy) cyanoterephthalylidene) (PDDCP), known for its photoluminescent and semi-conductive properties, aiming to create innovative composite materials with tailored optical features. The spectral analysis was conducted to investigate the effects of AuNPs on the PDDCP, varying AuNP volume percentages to measure changes in the absorption profile, molar extinction coefficient (), absorption cross-section (), and optical bandgap (Eg). Fluorescence spectra of the mixture at different volume ratios were also examined to assess exciplex formation, while amplified spontaneous emission (ASE) profiles were analyzed to study the behavior and photochemical stability of the polymer-NP hybrid material. Increasing AuNP volume induced both blue and red shifts in the absorption profile of the PDDCP. Higher AuNPs concentrations correlated with decreased and , inversely impacting Eg. The emission spectra obtained at varied AuNP volume ratios indicated significantly enhanced exciplex and excimer formations. The ASE profiles remained consistent but showed reduced intensity with increasing AuNPs concentrations, indicating their influence on hybrid material behavior and stability. The findings suggest that AuNPs affect PDDCP's optical characteristics, altering the absorption profile, bandgap, and fluorescence spectra. Furthermore, the observed reduction in ASE intensity highlights their influence on the behavior and photochemical stability of the hybrid material. These results contribute to a better understanding of the versatile applications of plasmonic-conjugated hybrid polymers.
等离激元纳米结构如何调节材料内激基复合物和激基缔合物的行为仍不清楚。因此,对于开发利用等离激元和共轭聚合物杂化材料之间相互作用的光电器件而言,深入的知识对于弥合这一差距至关重要。在此,本工作旨在探索金纳米颗粒(AuNPs)在调节共轭聚合物聚(2,5 - 二(3,7 - 二甲基辛氧基)氰基对苯二甲叉)(PDDCP)内激基复合物和激基缔合物状态方面的作用,PDDCP以其光致发光和半导电特性而闻名,旨在创建具有定制光学特性的创新复合材料。进行光谱分析以研究AuNPs对PDDCP的影响,改变AuNP的体积百分比以测量吸收曲线、摩尔消光系数()、吸收截面()和光学带隙(Eg)的变化。还检查了不同体积比混合物的荧光光谱以评估激基复合物的形成,同时分析放大自发发射(ASE)曲线以研究聚合物 - 纳米颗粒杂化材料的行为和光化学稳定性。增加AuNP的体积会导致PDDCP的吸收曲线出现蓝移和红移。较高的AuNPs浓度与降低的 和 相关,对Eg产生反向影响。在不同AuNP体积比下获得的发射光谱表明激基复合物和激基缔合物的形成显著增强。ASE曲线保持一致,但随着AuNPs浓度的增加强度降低,表明它们对杂化材料行为和稳定性的影响。研究结果表明,AuNPs会影响PDDCP的光学特性,改变吸收曲线、带隙和荧光光谱。此外,观察到的ASE强度降低突出了它们对杂化材料行为和光化学稳定性的影响。这些结果有助于更好地理解等离激元 - 共轭杂化聚合物的广泛应用。