Slomkowski Stanislaw, Basinska Teresa, Gadzinowski Mariusz, Mickiewicz Damian
Division of Functional Polymers and Polymer Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland.
Polymers (Basel). 2024 Sep 3;16(17):2503. doi: 10.3390/polym16172503.
Many therapies require the transport of therapeutic compounds or substances encapsulated in carriers that reduce or, if possible, eliminate their direct contact with healthy tissue and components of the immune system, which may react to them as something foreign and dangerous to the patient's body. To date, inorganic nanoparticles, solid lipids, micelles and micellar aggregates, liposomes, polymeric micelles, and other polymer assemblies were tested as drug carriers. Specifically, using polymers creates a variety of options to prepare nanocarriers tailored to the chosen needs. Among polymers, aliphatic polyesters are a particularly important group. The review discusses controlled synthesis of poly(-butyrolactone)s, polylactides, polyglycolide, poly(ε-caprolactone), and copolymers containing polymacrolactone units with double bonds suitable for preparation of functionalized nanoparticles. Discussed are syntheses of aliphatic polymers with controlled molar masses ranging from a few thousand to 10 and, in the case of polyesters with chiral centers in the chains, with controlled microstructure. The review presents also a collection of methods useful for the preparation of the drug-loaded nanocarriers: classical, developed and mastered more recently (e.g., nanoprecipitation), and forgotten but still with great potential (by the direct synthesis of the drug-loaded nanoparticles in the process comprising monomer and drug). The article describes also in-vitro and model in-vivo studies for the brain-targeted drugs based on polyester-containing nanocarriers and presents a brief update on the clinical studies and the polyester nanocarrier formulation approved for application in the clinics in South Korea for the treatment of breast, lung, and ovarian cancers.
许多治疗方法需要将治疗性化合物或物质封装在载体中进行运输,这些载体可减少或尽可能消除它们与健康组织及免疫系统成分的直接接触,因为免疫系统可能会将它们视为对患者身体有害的外来物质并产生反应。迄今为止,无机纳米颗粒、固体脂质、胶束和胶束聚集体、脂质体、聚合物胶束以及其他聚合物组装体都已作为药物载体进行了测试。具体而言,使用聚合物为制备符合特定需求的纳米载体提供了多种选择。在聚合物中,脂肪族聚酯是一个特别重要的类别。本综述讨论了聚(丁内酯)、聚丙交酯、聚乙交酯、聚(ε-己内酯)以及含有适合制备功能化纳米颗粒的双键的聚丙交酯单元的共聚物的可控合成。文中讨论了摩尔质量可控、范围从几千到10的脂肪族聚合物的合成,对于链中具有手性中心的聚酯,则讨论了其微观结构可控的合成。本综述还介绍了一系列可用于制备载药纳米载体的方法:经典方法、近期发展并掌握的方法(如纳米沉淀法)以及虽已被遗忘但仍具有巨大潜力的方法(通过在包含单体和药物的过程中直接合成载药纳米颗粒)。本文还描述了基于含聚酯纳米载体的脑靶向药物的体外和体内模型研究,并简要介绍了韩国已批准用于治疗乳腺癌、肺癌和卵巢癌的临床研究及聚酯纳米载体制剂的最新情况。