Suppr超能文献

基于临床和放射学特征的青少年肌阵挛癫痫预后预测人工智能模型的开发与验证

Development and Validation of Artificial Intelligence Models for Prognosis Prediction of Juvenile Myoclonic Epilepsy with Clinical and Radiological Features.

作者信息

Kim Kyung Min, Choi Bo Kyu, Ha Woo-Seok, Cho Soomi, Chu Min Kyung, Heo Kyoung, Kim Won-Joo

机构信息

Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.

Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.

出版信息

J Clin Med. 2024 Aug 27;13(17):5080. doi: 10.3390/jcm13175080.

Abstract

Juvenile myoclonic epilepsy (JME) is a common adolescent epilepsy characterized by myoclonic, generalized tonic-clonic, and sometimes absence seizures. Prognosis varies, with many patients experiencing relapse despite pharmacological treatment. Recent advances in imaging and artificial intelligence suggest that combining microstructural brain changes with traditional clinical variables can enhance potential prognostic biomarkers identification. : A retrospective study was conducted on patients with JME at the Severance Hospital, analyzing clinical variables and magnetic resonance imaging (MRI) data. Machine learning models were developed to predict prognosis using clinical and radiological features. : The study utilized six machine learning models, with the XGBoost model demonstrating the highest predictive accuracy (AUROC 0.700). Combining clinical and MRI data outperformed models using either type of data alone. The key features identified through a Shapley additive explanation analysis included the volumes of the left cerebellum white matter, right thalamus, and left globus pallidus. This study demonstrated that integrating clinical and radiological data enhances the predictive accuracy of JME prognosis. Combining these neuroanatomical features with clinical variables provided a robust prediction of JME prognosis, highlighting the importance of integrating multimodal data for accurate prognosis.

摘要

青少年肌阵挛癫痫(JME)是一种常见的青少年癫痫,其特征为肌阵挛发作、全身性强直阵挛发作,有时还伴有失神发作。预后各不相同,许多患者尽管接受了药物治疗仍会复发。影像学和人工智能方面的最新进展表明,将脑微观结构变化与传统临床变量相结合可以提高潜在预后生物标志物的识别能力。:对首尔圣母医院的JME患者进行了一项回顾性研究,分析临床变量和磁共振成像(MRI)数据。开发了机器学习模型,利用临床和放射学特征预测预后。:该研究使用了六种机器学习模型,其中XGBoost模型显示出最高的预测准确率(曲线下面积为0.700)。将临床数据和MRI数据相结合的模型比单独使用任何一种数据的模型表现更好。通过夏普利值附加解释分析确定的关键特征包括左侧小脑白质、右侧丘脑和左侧苍白球的体积。 这项研究表明,整合临床和放射学数据可提高JME预后的预测准确率。将这些神经解剖学特征与临床变量相结合,为JME预后提供了可靠的预测,突出了整合多模态数据以实现准确预后的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2166/11396353/9945636d9f5e/jcm-13-05080-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验