Suppr超能文献

基于 IMU 考虑关节损伤的机器学习异常步态分类。

Machine Learning Based Abnormal Gait Classification with IMU Considering Joint Impairment.

机构信息

Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.

School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea.

出版信息

Sensors (Basel). 2024 Aug 28;24(17):5571. doi: 10.3390/s24175571.

Abstract

Gait analysis systems are critical for assessing motor function in rehabilitation and elderly care. This study aimed to develop and optimize an abnormal gait classification algorithm considering joint impairments using inertial measurement units (IMUs) and walkway systems. Ten healthy male participants simulated normal walking, walking with knee impairment, and walking with ankle impairment under three conditions: without joint braces, with a knee brace, and with an ankle brace. Based on these simulated gaits, we developed classification models: distinguishing abnormal gait due to joint impairments, identifying specific joint disorders, and a combined model for both tasks. Recursive Feature Elimination with Cross-Validation (RFECV) was used for feature extraction, and models were fine-tuned using support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGB). The IMU-based system achieved over 91% accuracy in classifying the three types of gait. In contrast, the walkway system achieved less than 77% accuracy in classifying the three types of gait, primarily due to high misclassification rates between knee and ankle joint impairments. The IMU-based system shows promise for accurate gait assessment in patients with joint impairments, suggesting future research for clinical application improvements in rehabilitation and patient management.

摘要

步态分析系统对于评估康复和老年护理中的运动功能至关重要。本研究旨在开发和优化一种考虑到关节损伤的异常步态分类算法,使用惯性测量单元(IMU)和步道系统。十名健康男性参与者在三种情况下模拟正常行走、膝关节损伤行走和踝关节损伤行走:无关节支具、膝关节支具和踝关节支具。基于这些模拟步态,我们开发了分类模型:区分由于关节损伤导致的异常步态、识别特定的关节疾病,以及用于这两个任务的组合模型。递归特征消除与交叉验证(RFECV)用于特征提取,支持向量机(SVM)、随机森林(RF)和极端梯度提升(XGB)用于模型微调。基于 IMU 的系统在区分三种步态类型方面的准确率超过 91%。相比之下,步道系统在区分三种步态类型方面的准确率低于 77%,主要是因为膝关节和踝关节损伤之间的高错误分类率。基于 IMU 的系统有望实现对关节损伤患者的准确步态评估,为康复和患者管理中的临床应用改进提供了未来的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/225f/11397963/4f8f9769f527/sensors-24-05571-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验