Suppr超能文献

基于松弛分析的周期性实时任务增强谐波分区调度

Enhanced Harmonic Partitioned Scheduling of Periodic Real-Time Tasks Based on Slack Analysis.

作者信息

Ren Jiankang, Zhang Jun, Li Xu, Cao Wei, Li Shengyu, Chu Wenxin, Song Chengzhang

机构信息

School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.

Key Laboratory of Social Computing and Cognitive Intelligence, Ministry of Education, Dalian 116024, China.

出版信息

Sensors (Basel). 2024 Sep 5;24(17):5773. doi: 10.3390/s24175773.

Abstract

The adoption of multiprocessor platforms is growing commonplace in Internet of Things (IoT) applications to handle large volumes of sensor data while maintaining real-time performance at a reasonable cost and with low power consumption. Partitioned scheduling is a competitive approach to ensure the temporal constraints of real-time sensor data processing tasks on multiprocessor platforms. However, the problem of partitioning real-time sensor data processing tasks to individual processors is strongly NP-hard, making it crucial to develop efficient partitioning heuristics to achieve high real-time performance. This paper presents an enhanced harmonic partitioned multiprocessor scheduling method for periodic real-time sensor data processing tasks to improve system utilization over the state of the art. Specifically, we introduce a general harmonic index to effectively quantify the harmonicity of a periodic real-time task set. This index is derived by analyzing the variance between the worst-case slack time and the best-case slack time for the lowest-priority task in the task set. Leveraging this harmonic index, we propose two efficient partitioned scheduling methods to optimize the system utilization via strategically allocating the workload among processors by leveraging the task harmonic relationship. Experiments with randomly synthesized task sets demonstrate that our methods significantly surpass existing approaches in terms of schedulability.

摘要

在物联网(IoT)应用中,采用多处理器平台来处理大量传感器数据变得越来越普遍,同时要以合理的成本和低功耗保持实时性能。分区调度是一种有竞争力的方法,可确保多处理器平台上实时传感器数据处理任务的时间约束。然而,将实时传感器数据处理任务分配到各个处理器的问题是强NP难问题,因此开发高效的分区启发式算法以实现高实时性能至关重要。本文提出了一种用于周期性实时传感器数据处理任务的增强型谐波分区多处理器调度方法,以提高系统利用率,优于现有技术。具体而言,我们引入了一个通用谐波指数,以有效地量化周期性实时任务集的谐波性。该指数是通过分析任务集中最低优先级任务的最坏情况松弛时间和最佳情况松弛时间之间的差异得出的。利用这个谐波指数,我们提出了两种高效的分区调度方法,通过利用任务谐波关系在处理器之间战略性地分配工作负载来优化系统利用率。对随机合成任务集的实验表明,我们的方法在可调度性方面显著优于现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8ed/11398090/02687ec906ac/sensors-24-05773-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验