Suppr超能文献

利用基于无人机的多光谱和 RGB 图像比较估算草料高度和地上生物量。

Forage Height and Above-Ground Biomass Estimation by Comparing UAV-Based Multispectral and RGB Imagery.

机构信息

Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada.

出版信息

Sensors (Basel). 2024 Sep 6;24(17):5794. doi: 10.3390/s24175794.

Abstract

Crop height and biomass are the two important phenotyping traits to screen forage population types at local and regional scales. This study aims to compare the performances of multispectral and RGB sensors onboard drones for quantitative retrievals of forage crop height and biomass at very high resolution. We acquired the unmanned aerial vehicle (UAV) multispectral images (MSIs) at 1.67 cm spatial resolution and visible data (RGB) at 0.31 cm resolution and measured the forage height and above-ground biomass over the alfalfa ( L.) breeding trials in the Canadian Prairies. (1) For height estimation, the digital surface model (DSM) and digital terrain model (DTM) were extracted from MSI and RGB data, respectively. As the resolution of the DTM is five times less than that of the DSM, we applied an aggregation algorithm to the DSM to constrain the same spatial resolution between DSM and DTM. The difference between DSM and DTM was computed as the canopy height model (CHM), which was at 8.35 cm and 1.55 cm for MSI and RGB data, respectively. (2) For biomass estimation, the normalized difference vegetation index (NDVI) from MSI data and excess green (ExG) index from RGB data were analyzed and regressed in terms of ground measurements, leading to empirical models. The results indicate better performance of MSI for above-ground biomass (AGB) retrievals at 1.67 cm resolution and better performance of RGB data for canopy height retrievals at 1.55 cm. Although the retrieved height was well correlated with the ground measurements, a significant underestimation was observed. Thus, we developed a bias correction function to match the retrieval with the ground measurements. This study provides insight into the optimal selection of sensor for specific targeted vegetation growth traits in a forage crop.

摘要

作物高度和生物量是在本地和区域尺度筛选饲料种群类型的两个重要表型特征。本研究旨在比较无人机上多光谱和 RGB 传感器在非常高分辨率下定量获取饲料作物高度和生物量的性能。我们获取了无人飞行器 (UAV) 多光谱图像 (MSI),分辨率为 1.67 厘米,可见光数据 (RGB),分辨率为 0.31 厘米,并在加拿大草原的紫花苜蓿 ( L.) 育种试验中测量了饲料高度和地上生物量。(1) 对于高度估计,数字表面模型 (DSM) 和数字地形模型 (DTM) 分别从 MSI 和 RGB 数据中提取。由于 DTM 的分辨率是 DSM 的五倍,因此我们应用了一个聚合算法来约束 DSM 的相同空间分辨率。DSM 和 DTM 之间的差值计算为冠层高度模型 (CHM),对于 MSI 和 RGB 数据,分别为 8.35 厘米和 1.55 厘米。(2) 对于生物量估计,分析了 MSI 数据中的归一化差异植被指数 (NDVI) 和 RGB 数据中的过量绿色 (ExG) 指数,并根据地面测量值进行了回归,得出了经验模型。结果表明,MSI 在 1.67 厘米分辨率下对地上生物量 (AGB) 的反演性能更好,而 RGB 数据在 1.55 厘米下对冠层高度的反演性能更好。尽管反演的高度与地面测量值高度相关,但观察到明显的低估。因此,我们开发了一个偏差校正函数,以使反演与地面测量值相匹配。本研究为在饲料作物中针对特定目标植被生长特征选择传感器提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af17/11397825/c743168c2641/sensors-24-05794-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验