Suppr超能文献

地球的高分辨率冠层高度模型。

A high-resolution canopy height model of the Earth.

机构信息

EcoVision Lab, Photogrammetry and Remote Sensing, ETH Zürich, Zürich, Switzerland.

Department of Computer Science, University of Copenhagen, Copenhagen, Denmark.

出版信息

Nat Ecol Evol. 2023 Nov;7(11):1778-1789. doi: 10.1038/s41559-023-02206-6. Epub 2023 Sep 28.

Abstract

The worldwide variation in vegetation height is fundamental to the global carbon cycle and central to the functioning of ecosystems and their biodiversity. Geospatially explicit and, ideally, highly resolved information is required to manage terrestrial ecosystems, mitigate climate change and prevent biodiversity loss. Here we present a comprehensive global canopy height map at 10 m ground sampling distance for the year 2020. We have developed a probabilistic deep learning model that fuses sparse height data from the Global Ecosystem Dynamics Investigation (GEDI) space-borne LiDAR mission with dense optical satellite images from Sentinel-2. This model retrieves canopy-top height from Sentinel-2 images anywhere on Earth and quantifies the uncertainty in these estimates. Our approach improves the retrieval of tall canopies with typically high carbon stocks. According to our map, only 5% of the global landmass is covered by trees taller than 30 m. Further, we find that only 34% of these tall canopies are located within protected areas. Thus, the approach can serve ongoing efforts in forest conservation and has the potential to foster advances in climate, carbon and biodiversity modelling.

摘要

植被高度的全球变化对全球碳循环至关重要,也是生态系统及其生物多样性功能的核心。要管理陆地生态系统、缓解气候变化和防止生物多样性丧失,就需要具有明确地理位置且最好是高分辨率的信息。在这里,我们展示了一张 2020 年全球树冠高度图,其地面采样距离为 10 米。我们开发了一个概率深度学习模型,该模型融合了来自全球生态系统动力学调查(GEDI)星载激光雷达任务的稀疏高度数据和 Sentinel-2 的密集光学卫星图像。该模型可以从 Sentinel-2 图像中检索地球上任何地方的树冠顶部高度,并量化这些估计的不确定性。我们的方法提高了对具有典型高碳储量的高树冠的检索能力。根据我们的地图,只有 5%的全球陆地被 30 米以上的树木覆盖。此外,我们发现这些高大树冠中只有 34%位于保护区内。因此,该方法可以服务于正在进行的森林保护工作,并有可能促进气候、碳和生物多样性建模方面的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a5c/10627820/d06f4629ac18/41559_2023_2206_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验