Suppr超能文献

解析用于可持续类芬顿氧化的新型吡啶甲酸盐-锰(II)/过一硫酸盐体系:吡啶甲酸盐-锰(IV)-过一硫酸盐络合物的主导作用

Deciphering the Novel Picolinate-Mn(II)/peroxymonosulfate System for Sustainable Fenton-like Oxidation: Dominance of the Picolinate-Mn(IV)-peroxymonosulfate Complex.

作者信息

Niu Lijun, Luo Zhipeng, Chen Wenzheng, Zhong Xinyang, Zeng Huabin, Yu Xin, Feng Mingbao

机构信息

Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China.

出版信息

Environ Sci Technol. 2024 Sep 14. doi: 10.1021/acs.est.4c05482.

Abstract

A highly efficient and sustainable water treatment system was developed herein by combining Mn(II), peroxymonosulfate (PMS), and biodegradable picolinic acid (PICA). The micropollutant elimination process underwent two phases: an initial slow degradation phase (0-10 min) followed by a rapid phase (10-20 min). Multiple evidence demonstrated that a PICA-Mn(IV) complex (PICA-Mn(IV)) was generated, acting as a conductive bridge facilitating the electron transfer between PMS and micropollutants. Quantum chemical calculations revealed that PMS readily oxidized the PICA-Mn(II) to PICA-Mn(IV). This intermediate then complexed with PMS to produce PICA-Mn(IV)-PMS, elongating the O-O bond of PMS and increasing its oxidation capacity. The primary transformation mechanisms of typical micropollutants mediated by PICA-Mn(IV)-PMS* include oxidation, ring-opening, bond cleavage, and epoxidation reactions. The toxicity assessment results showed that most products were less toxic than the parent compounds. Moreover, the Mn(II)/PICA/PMS system showed resilience to water matrices and high efficiency in real water environments. Notably, PICA-Mn(IV)* exhibited greater stability and a longer lifespan than traditional reactive oxygen species, enabling repeated utilization. Overall, this study developed an innovative, sustainable, and selective oxidation system, i.e., Mn(II)/PICA/PMS, for rapid water decontamination, highlighting the critical role of in situ generated Mn(IV).

摘要

本文通过将锰(II)、过一硫酸氢钾(PMS)和可生物降解的吡啶甲酸(PICA)相结合,开发了一种高效且可持续的水处理系统。微污染物的去除过程经历两个阶段:初始的缓慢降解阶段(0 - 10分钟),随后是快速阶段(10 - 20分钟)。多项证据表明,生成了一种PICA - 锰(IV)络合物(PICA - Mn(IV)),它作为导电桥促进了PMS与微污染物之间的电子转移。量子化学计算表明,PMS很容易将PICA - 锰(II)氧化为PICA - 锰(IV)。然后,这种中间体与PMS络合生成PICA - 锰(IV) - PMS,延长了PMS的O - O键并提高了其氧化能力。由PICA - 锰(IV) - PMS*介导的典型微污染物的主要转化机制包括氧化、开环、键断裂和环氧化反应。毒性评估结果表明,大多数产物的毒性低于母体化合物。此外,锰(II)/PICA/PMS系统对水基质具有耐受性,在实际水环境中具有高效性。值得注意的是,PICA - 锰(IV)*比传统的活性氧物种表现出更高的稳定性和更长的寿命,能够重复利用。总体而言,本研究开发了一种创新、可持续且选择性的氧化系统,即锰(II)/PICA/PMS,用于快速水净化,突出了原位生成的锰(IV)的关键作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验