Suppr超能文献

用于机器学习辅助手写识别的羧甲基纤维素锚定碳纳米管/ MXene制成的超灵敏柔性应变传感器。

Ultrasensitive Flexible Strain Sensor Made with Carboxymethyl-Cellulose-Anchored Carbon Nanotubes/MXene for Machine-Learning-Assisted Handwriting Recognition.

作者信息

Cao Junming, Yuan Xueguang, Zhang Yangan, Wang Qi, He Qi, Guo Shaohua, Ren Xiaomin

机构信息

State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China.

School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China.

出版信息

ACS Appl Mater Interfaces. 2024 Sep 25;16(38):51447-51458. doi: 10.1021/acsami.4c09786. Epub 2024 Sep 14.

Abstract

The combination of wearable sensors with machine learning enables intelligent perception in human-machine interaction and healthcare, but achieving high sensitivity and a wide working range in flexible strain sensors for signal acquisition and accurate recognition remains challenging. Herein, we introduced carboxymethyl cellulose (CMC) into a carbon nanotubes (CNTs)/MXene hybrid network, forming tight anchoring among the conductive materials and, thus, bringing enhanced interaction. The silicone-rubber-encapsulated CMC-anchored CNTs/MXene (CCM) strain sensor exhibits an excellent sensitivity (maximum gauge factor up to 71 294), wide working range (200%), ultralow detection limit (0.05%), and outstanding durability (over 10 000 cycles), which is superior to most of the recently reported counterparts also based on a conductive composite film. Moreover, the sensor achieves seamless integration with human skin with the help of a poly(acrylic acid) adhesive layer, successfully obtaining stable and clear waveforms with meaningful profiles from the human body. On this basis, we proposed and realized a novel in-air handwriting recognition method via extracting multiple features of high-quality strain signals assisted by deep neural networks, achieving a high classification accuracy of 98.00 and 94.85% for Arabic numerals and letters, respectively. Our work provides an effective approach for significantly improving strain sensing performance, thereby facilitating innovative applications of flexible sensors.

摘要

可穿戴传感器与机器学习的结合实现了人机交互和医疗保健中的智能感知,但要在用于信号采集和准确识别的柔性应变传感器中实现高灵敏度和宽工作范围仍具有挑战性。在此,我们将羧甲基纤维素(CMC)引入碳纳米管(CNTs)/MXene混合网络中,在导电材料之间形成紧密锚固,从而增强相互作用。硅橡胶封装的CMC锚定CNTs/MXene(CCM)应变传感器具有出色的灵敏度(最大应变系数高达71294)、宽工作范围(200%)、超低检测限(0.05%)和出色的耐久性(超过10000次循环),优于最近报道的大多数基于导电复合膜的同类产品。此外,借助聚丙烯酸粘合剂层,该传感器实现了与人体皮肤的无缝集成,成功从人体获得了具有有意义轮廓的稳定清晰波形。在此基础上,我们提出并实现了一种新颖的空中手写识别方法,通过深度神经网络辅助提取高质量应变信号的多个特征,对阿拉伯数字和字母的分类准确率分别达到98.00%和94.85%。我们的工作为显著提高应变传感性能提供了一种有效方法,从而促进柔性传感器的创新应用。

相似文献

9
Ultrasensitive and Wearable Carbon Hybrid Fiber Devices as Robust Intelligent Sensors.超灵敏可穿戴碳杂化纤维器件:稳健的智能传感器
ACS Appl Mater Interfaces. 2021 May 26;13(20):23905-23914. doi: 10.1021/acsami.1c03615. Epub 2021 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验