Suppr超能文献

对用于娱乐海滩粪便污染的实时预报系统的模型构建和性能的批判性回顾。

A critical review of model construction and performance for nowcast systems for faecal contamination in recreational beaches.

机构信息

Departamento Modelización Estadística de Datos e Inteligencia Artificial (MEDIA), CURE-Rocha, Universidad de la República, Ruta Nacional N°9 intersección Ruta N°15, Rocha 27000, Uruguay.

Departamento Modelización Estadística de Datos e Inteligencia Artificial (MEDIA), CURE-Rocha, Universidad de la República, Ruta Nacional N°9 intersección Ruta N°15, Rocha 27000, Uruguay.

出版信息

Sci Total Environ. 2024 Dec 1;954:176233. doi: 10.1016/j.scitotenv.2024.176233. Epub 2024 Sep 12.

Abstract

Faecal contamination is a widespread environmental and public health problem on recreational beaches around the world. The implementation of predictive models has been recommended by the World Health Organization as a complement to traditional monitoring to assist decision-makers and reduce health risks. Despite several advances that have been made in the modeling of faecal coliforms, tools and algorithms from machine learning are still scarcely used in the field and their implementation in nowcast systems is delayed. Here, we perform a literature review on modeling strategies to predict faecal contamination in recreational beaches in the last two decades and the implementation of models in nowcast systems to aid management. Models constructed for surface waters of continental (lakes, rivers and streams), estuarine and marine coastal ecosystems were analyzed and compared based on performance metrics for continuous (i.e. regression; R, Root Mean Square Error: RMSE) and categorical (i.e. classification; accuracy, sensitivity, specificity) responses. We found 67 articles matching the search criteria and 40 with information allowing to evaluate and compare predictive ability. In early 2000, Multiple Linear Regressions were common, followed by a peak of Artificial Neural Networks (ANNs) from 2010 to 2015, and the rise of Machine learning techniques, such as decision trees (CART and Random Forest) since 2015. ANNs and decision trees presented better accuracy than the remaining models. Rainfall and its lags were important predictor variables followed by water temperature. Specificity was much higher than sensitivity in all modeling strategies, which is typical in data sets where one category (e.g. closed beach) is far less common than the normal state (i.e. unbalanced data sets). We registered the implementation of statistical models in early warning systems in 6 countries, mainly by public beach quality management institutions, followed by NGOs in conjunction with universities. We identified critical steps towards improving model construction, evaluation and usage: i) the need to balance the data set previous to model training, ii) the need to separate data set in training, validation and test to perform an honest evaluation of model performance and iii) the transduction of model outputs to plain language to relevant stakeholders. Integrating into a single framework in situ monitoring, model construction and nowcasting systems could help to improve decision making systems to protect users from bathing in contaminated waters. Still the reduction of arrival of faecal coliforms to aquatic ecosystems (e.g. by improving sewage treatment systems) will be the ultimate factor in reducing health risk.

摘要

粪便污染是世界各地娱乐海滩普遍存在的环境和公共卫生问题。世界卫生组织建议实施预测模型,作为传统监测的补充,以协助决策者并降低健康风险。尽管在粪便大肠菌群建模方面取得了一些进展,但机器学习的工具和算法在该领域仍很少使用,其在实时预报系统中的应用也被推迟。在这里,我们对过去二十年中用于预测娱乐海滩粪便污染的建模策略进行了文献回顾,并对实时预报系统中模型的实施进行了研究,以辅助管理。我们分析并比较了基于大陆(湖泊、河流和溪流)、河口和海洋沿海生态系统地表水构建的模型,比较了连续(即回归;R、均方根误差:RMSE)和分类(即分类;准确性、灵敏度、特异性)响应的性能指标。我们找到了 67 篇符合搜索条件的文章,其中 40 篇文章提供了可用于评估和比较预测能力的信息。在 2000 年初,多元线性回归很常见,随后从 2010 年到 2015 年,人工神经网络(ANNs)达到高峰,自 2015 年以来,机器学习技术(如决策树(CART 和随机森林))的兴起。ANNs 和决策树的准确性优于其余模型。降雨量及其滞后是重要的预测变量,其次是水温。在所有建模策略中,特异性远高于灵敏度,这在一类(例如关闭的海滩)比正常状态(即不平衡数据集)远不常见的数据集是典型的。我们在 6 个国家注册了统计模型在早期预警系统中的实施情况,主要由公共海滩质量管理机构实施,其次是非政府组织与大学合作。我们确定了改善模型构建、评估和使用的关键步骤:i)在模型训练之前需要平衡数据集,ii)需要将数据集分为训练、验证和测试,以对模型性能进行诚实评估,以及 iii)将模型输出转换为相关利益相关者的通俗易懂的语言。将原位监测、模型构建和实时预报系统集成到一个单一的框架中,可以帮助改进决策系统,以保护使用者免受受污染水的侵害。减少粪便大肠菌群进入水生生态系统的数量(例如,通过改进污水处理系统)仍将是降低健康风险的最终因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验