Suppr超能文献

大语言模型、科学知识与真实性:简化人类专家评估的框架。

Large Language Models, scientific knowledge and factuality: A framework to streamline human expert evaluation.

机构信息

Digital Cancer Research, CRUK National Biomarker Centre, Manchester, United Kingdom; Department of Computer Science, University of Manchester, Manchester, United Kingdom.

Digital Cancer Research, CRUK National Biomarker Centre, Manchester, United Kingdom; Idiap Research Institute, Martigny, Switzerland.

出版信息

J Biomed Inform. 2024 Oct;158:104724. doi: 10.1016/j.jbi.2024.104724. Epub 2024 Sep 12.

Abstract

OBJECTIVE

The paper introduces a framework for the evaluation of the encoding of factual scientific knowledge, designed to streamline the manual evaluation process typically conducted by domain experts. Inferring over and extracting information from Large Language Models (LLMs) trained on a large corpus of scientific literature can potentially define a step change in biomedical discovery, reducing the barriers for accessing and integrating existing medical evidence. This work explores the potential of LLMs for dialoguing with biomedical background knowledge, using the context of antibiotic discovery.

METHODS

The framework involves three evaluation steps, each assessing different aspects sequentially: fluency, prompt alignment, semantic coherence, factual knowledge, and specificity of the generated responses. By splitting these tasks between non-experts and experts, the framework reduces the effort required from the latter. The work provides a systematic assessment on the ability of eleven state-of-the-art LLMs, including ChatGPT, GPT-4 and Llama 2, in two prompting-based tasks: chemical compound definition generation and chemical compound-fungus relation determination.

RESULTS

Although recent models have improved in fluency, factual accuracy is still low and models are biased towards over-represented entities. The ability of LLMs to serve as biomedical knowledge bases is questioned, and the need for additional systematic evaluation frameworks is highlighted.

CONCLUSION

While LLMs are currently not fit for purpose to be used as biomedical factual knowledge bases in a zero-shot setting, there is a promising emerging property in the direction of factuality as the models become domain specialised, scale up in size and level of human feedback.

摘要

目的

本文介绍了一种评估事实性科学知识编码的框架,旨在简化通常由领域专家进行的手动评估过程。在大量科学文献训练的大型语言模型 (LLM) 上进行推断和提取信息,有可能在生物医学发现方面带来重大变革,降低获取和整合现有医学证据的门槛。这项工作探讨了 LLM 用于与生物医学背景知识对话的潜力,以抗生素发现为背景。

方法

该框架涉及三个评估步骤,每个步骤依次评估不同的方面:流畅性、提示对齐、语义连贯性、事实知识和生成响应的特异性。通过将这些任务分配给非专家和专家,该框架减少了后者所需的工作量。这项工作对包括 ChatGPT、GPT-4 和 Llama 2 在内的十一个最先进的 LLM 在两个基于提示的任务中的能力进行了系统评估:化合物定义生成和化合物-真菌关系确定。

结果

尽管最近的模型在流畅性方面有所提高,但事实准确性仍然较低,而且模型存在对代表性过高的实体的偏见。LLM 作为生物医学知识库的能力受到质疑,需要强调额外的系统评估框架。

结论

虽然 LLM 目前不适合在零样本设置中用作生物医学事实知识库,但随着模型变得更加专业化、规模扩大和接受更多的人工反馈,在事实性方面有一个有前途的新兴趋势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验