Suppr超能文献

离线Medios人工智能在农村远程眼科环境中检测青光眼的诊断性能。

Diagnostic Performance of the Offline Medios Artificial Intelligence for Glaucoma Detection in a Rural Tele-Ophthalmology Setting.

作者信息

Upadhyaya Swati, Rao Divya Parthasarathy, Kavitha Srinivasan, Ballae Ganeshrao Shonraj, Negiloni Kalpa, Bhandary Shreya, Savoy Florian M, Venkatesh Rengaraj

机构信息

Department of Glaucoma, Aravind Eye Hospital, Pondicherry, India.

Remidio Innovative Solutions, Inc, Glen Allen, Virginia.

出版信息

Ophthalmol Glaucoma. 2025 Jan-Feb;8(1):28-36. doi: 10.1016/j.ogla.2024.09.002. Epub 2024 Sep 12.

Abstract

PURPOSE

This study assesses the diagnostic efficacy of offline Medios Artificial Intelligence (AI) glaucoma software in a primary eye care setting, using nonmydriatic fundus images from Remidio's Fundus-on-Phone (FOP NM-10). Artificial intelligence results were compared with tele-ophthalmologists' diagnoses and with a glaucoma specialist's assessment for those participants referred to a tertiary eye care hospital.

DESIGN

Prospective cross-sectional study PARTICIPANTS: Three hundred three participants from 6 satellite vision centers of a tertiary eye hospital.

METHODS

At the vision center, participants underwent comprehensive eye evaluations, including clinical history, visual acuity measurement, slit lamp examination, intraocular pressure measurement, and fundus photography using the FOP NM-10 camera. Medios AI-Glaucoma software analyzed 42-degree disc-centric fundus images, categorizing them as normal, glaucoma, or suspect. Tele-ophthalmologists who were glaucoma fellows with a minimum of 3 years of ophthalmology and 1 year of glaucoma fellowship training, masked to artificial intelligence (AI) results, remotely diagnosed subjects based on the history and disc appearance. All participants labeled as disc suspects or glaucoma by AI or tele-ophthalmologists underwent further comprehensive glaucoma evaluation at the base hospital, including clinical examination, Humphrey visual field analysis, and OCT. Artificial intelligence and tele-ophthalmologist diagnoses were then compared with a glaucoma specialist's diagnosis.

MAIN OUTCOME MEASURES

Sensitivity and specificity of Medios AI.

RESULTS

Out of 303 participants, 299 with at least one eye of sufficient image quality were included in the study. The remaining 4 participants did not have sufficient image quality in both eyes. Medios AI identified 39 participants (13%) with referable glaucoma. The AI exhibited a sensitivity of 0.91 (95% confidence interval [CI]: 0.71-0.99) and specificity of 0.93 (95% CI: 0.89-0.96) in detecting referable glaucoma (definite perimetric glaucoma) when compared to tele-ophthalmologist. The agreement between AI and the glaucoma specialist was 80.3%, surpassing the 55.3% agreement between the tele-ophthalmologist and the glaucoma specialist amongst those participants who were referred to the base hospital. Both AI and the tele-ophthalmologist relied on fundus photos for diagnoses, whereas the glaucoma specialist's assessments at the base hospital were aided by additional tools such as Humphrey visual field analysis and OCT. Furthermore, AI had fewer false positive referrals (2 out of 10) compared to the tele-ophthalmologist (9 out of 10).

CONCLUSIONS

Medios offline AI exhibited promising sensitivity and specificity in detecting referable glaucoma from remote vision centers in southern India when compared with teleophthalmologists. It also demonstrated better agreement with glaucoma specialist's diagnosis for referable glaucoma participants.

FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

摘要

目的

本研究使用Remidio公司的手机眼底相机(FOP NM - 10)获取的免散瞳眼底图像,评估离线Medios人工智能(AI)青光眼软件在基层眼科护理环境中的诊断效能。将人工智能诊断结果与远程眼科医生的诊断结果进行比较,并与转诊至三级眼科护理医院的参与者的青光眼专家评估结果进行比较。

设计

前瞻性横断面研究

参与者

来自一家三级眼科医院6个卫星视力中心的303名参与者。

方法

在视力中心,参与者接受了全面的眼部评估,包括临床病史、视力测量、裂隙灯检查、眼压测量以及使用FOP NM - 10相机进行眼底摄影。Medios AI - 青光眼软件分析以视盘为中心的42度眼底图像,将其分类为正常、青光眼或可疑。远程眼科医生为青光眼专科研究员,至少有3年眼科及1年青光眼专科培训经验,在不知晓人工智能(AI)结果的情况下,根据病史和视盘外观对受试者进行远程诊断。所有被AI或远程眼科医生标记为视盘可疑或青光眼的参与者在总院接受了进一步的全面青光眼评估,包括临床检查、Humphrey视野分析和OCT。然后将人工智能和远程眼科医生的诊断结果与青光眼专家的诊断结果进行比较。

主要观察指标

Medios AI的敏感性和特异性。

结果

303名参与者中,299名至少有一只眼睛图像质量足够,被纳入研究。其余4名参与者双眼图像质量均不足。Medios AI识别出39名(13%)可转诊性青光眼患者。与远程眼科医生相比,AI在检测可转诊性青光眼(明确的视野缺损性青光眼)时,敏感性为0.91(95%置信区间[CI]:0.71 - 0.99),特异性为0.93(95% CI:0.89 - 0.96)。AI与青光眼专家之间的一致性为80.3%,高于转诊至总院的参与者中远程眼科医生与青光眼专家之间55.3%的一致性。AI和远程眼科医生均依靠眼底照片进行诊断,而总院青光眼专家的评估借助了其他工具,如Humphrey视野分析和OCT。此外,与远程眼科医生(10例中有9例)相比,AI的假阳性转诊较少(10例中有2例)。

结论

与远程眼科医生相比,Medios离线AI在从印度南部远程视力中心检测可转诊性青光眼方面表现出有前景的敏感性和特异性。对于可转诊性青光眼参与者,它与青光眼专家的诊断也显示出更好的一致性。

财务披露

专有或商业披露信息可在本文末尾的脚注和披露内容中找到。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验