Senthil Sirisha, Rao Divya Parthasarathy, Savoy Florian M, Negiloni Kalpa, Bhandary Shreya, Chary Raghava, Chandrashekar Garudadri
VST Center for Glaucoma Care, LV Prasad Eye Institute, Hyderabad, India.
Remidio Innovative Solutions, Inc, Glen Allen, United States of America.
PLoS One. 2025 Jun 26;20(6):e0324883. doi: 10.1371/journal.pone.0324883. eCollection 2025.
Leveraging an artificial intelligence system (AI) for glaucoma screening can mitigate the current challenges and provide prompt detection and management crucial in averting irreversible blindness. The study reports the real-world performance of a glaucoma AI system deployed on a smartphone-based fundus camera across various severities of glaucoma.
In this prospective comparative study at a tertiary care glaucoma clinic, consecutive patients were evaluated by a glaucoma specialist using clinical assessment, visual field tests, and SD-OCT, and categorized as definite glaucoma, glaucoma suspect, or no glaucoma. For glaucoma patients, severity was determined using Hoddap-Parrish-Anderson criteria based on visual field mean deviation (MD). A disc-centered image per eye was captured using a validated portable non-mydriatic fundus camera. The AI tool's ability to detect referral-warranted glaucoma (glaucoma and glaucoma suspects) versus no glaucoma was compared to the specialist's diagnosis.
We included 213 participants with a mean age of 55 ± 14.7 years (18, 88). The glaucoma specialist diagnosed 129 subjects as definite glaucoma (early-23, moderate-31, severe-75), 33-disc suspects and 51 as no-glaucoma. The automated AI system based on fundus images achieved an overall diagnostic accuracy of 92.02%, sensitivity of 91.36% (95%CI 85.93% to 95.19%) and specificity of 94.12% (83.76% to 98.77%) for referral warranted glaucoma. The 14 false negatives included 5-disc suspects and 9 definite glaucoma (3-early, 3-moderate and 3-advanced glaucoma). The sensitivity of AI for detecting early, moderate and advanced glaucoma was 86.9% (95%CI 66.4-97.2), 90.3% (95%CI 74.3-97.96), and 96% (88.75% to 99.17%) respectively.
In a real-world setting, the AI-based offline tool integrated on a smartphone fundus camera showed a promising performance in detecting referral-warranted glaucoma compared to a glaucoma specialist's diagnosis. The AI showed higher accuracy in detecting advanced glaucoma followed by moderate and early glaucoma.
利用人工智能系统(AI)进行青光眼筛查可以缓解当前面临的挑战,并提供及时的检测和管理,这对于避免不可逆性失明至关重要。本研究报告了一种部署在基于智能手机的眼底相机上的青光眼AI系统在青光眼不同严重程度下的实际性能。
在一家三级医疗青光眼诊所进行的这项前瞻性比较研究中,连续的患者由青光眼专家通过临床评估、视野测试和SD-OCT进行评估,并分类为确诊青光眼、青光眼疑似患者或无青光眼。对于青光眼患者,根据视野平均偏差(MD)使用霍达普-帕里什-安德森标准确定严重程度。使用经过验证的便携式免散瞳眼底相机为每只眼睛拍摄一张以视盘为中心的图像。将AI工具检测转诊指征性青光眼(青光眼和青光眼疑似患者)与无青光眼的能力与专家的诊断进行比较。
我们纳入了213名参与者,平均年龄为55±14.7岁(18至88岁)。青光眼专家诊断出129名受试者为确诊青光眼(早期23例、中度31例、重度75例),33例视盘疑似患者和51例无青光眼。基于眼底图像的自动化AI系统对转诊指征性青光眼的总体诊断准确率为92.02%,灵敏度为91.36%(95%CI 85.93%至95.19%),特异性为94.12%(83.76%至98.77%)。14例假阴性包括5例视盘疑似患者和9例确诊青光眼(早期3例、中度3例和晚期3例青光眼)。AI检测早期、中度和晚期青光眼的灵敏度分别为86.9%(95%CI 66.4-97.2)、90.3%(95%CI 74.3-97.96)和96%(88.75%至99.17%)。
在实际应用中,与青光眼专家的诊断相比,集成在智能手机眼底相机上的基于AI的离线工具在检测转诊指征性青光眼方面表现出了良好的性能。AI在检测晚期青光眼方面表现出更高的准确性,其次是中度和早期青光眼。