Castillo-Saldarriaga Carlos, Sarria Stephen, Santos Christine N S, Ajikumar Parayil K, Takors Ralf
Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
Manus Bio, 43 Foundry Avenue, Ste. 230, Waltham, MA 02453, USA.
Trends Biotechnol. 2024 Dec;42(12):1777-1794. doi: 10.1016/j.tibtech.2024.08.010. Epub 2024 Sep 13.
Biomanufacturing is emerging as a key technology for the sustainable production of chemicals, materials, and food ingredients using engineered microbes. However, despite billions of dollars of investment, few processes have been successfully commercialized due to a lack of attention on industrial-scale bioprocess design and innovation. In this study, we address this challenge through the development of a novel semi-continuous bioprocess for the production of the terpene amorpha-4,11-diene (AMD4,11) using engineered Escherichia coli. Using a hydrophilic membrane for product and biomass retention, we successfully decoupled production at low growth rates (~0.01 1/h) and improved reactor productivity up to 166 mg/l h, threefold compared with traditional fed-batch fermentations. When cell recycling was implemented, we showed sustained production at the highest conversion yield and production rate for up to three cycles, demonstrating the robustness of both the strain and the process and highlighting the potential for new bioprocess strategies to improve the economic viability of industrial biomanufacturing.
生物制造正成为利用工程微生物可持续生产化学品、材料和食品成分的关键技术。然而,尽管投资了数十亿美元,但由于对工业规模生物工艺设计和创新缺乏关注,很少有工艺成功实现商业化。在本研究中,我们通过开发一种新型半连续生物工艺来应对这一挑战,该工艺使用工程化大肠杆菌生产萜类化合物紫穗槐 -4,11- 二烯(AMD4,11)。通过使用亲水性膜来保留产物和生物质,我们成功地在低生长速率(约 0.01 1/h)下实现了生产解耦,并将反应器生产力提高到 166 mg/l h,与传统补料分批发酵相比提高了三倍。当实施细胞循环时,我们展示了在最高转化率和生产率下持续生产长达三个循环,证明了菌株和工艺的稳健性,并突出了新生物工艺策略改善工业生物制造经济可行性的潜力。