Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
Science and Technology Facilities Council, Swindon, UK.
Nat Commun. 2024 Sep 14;15(1):8067. doi: 10.1038/s41467-024-51768-x.
DNA data storage is a potential alternative to magnetic tape for archival storage purposes, promising substantial gains in information density. Critical to the success of DNA as a storage media is an understanding of the role of environmental factors on the longevity of the stored information. In this paper, we evaluate the effect of exposure to ionizing particle radiation, a cause of data loss in traditional magnetic media, on the longevity of data in DNA data storage pools. We develop a mass action kinetics model to estimate the rate of damage accumulation in DNA strands due to neutron interactions with both nucleotides and residual water molecules, then utilize the model to evaluate the effect several design parameters of a typical DNA data storage scheme have on expected data longevity. Finally, we experimentally validate our model by exposing dried DNA samples to different levels of neutron irradiation and analyzing the resulting error profile. Our results show that particle radiation is not a significant contributor to data loss in DNA data storage pools under typical storage conditions.
DNA 数据存储是一种有潜力的替代磁带的档案存储方式,有望在信息密度方面取得实质性的提升。DNA 作为存储介质成功的关键是要理解环境因素对存储信息寿命的影响。在本文中,我们评估了暴露在电离粒子辐射下对 DNA 数据存储池中长期数据的影响,电离粒子辐射是传统磁性介质中数据丢失的一个原因。我们开发了一个基于质量作用动力学的模型来估计由于与核苷酸和残留水分子的相互作用,导致 DNA 链损伤积累的速率,然后利用该模型评估典型 DNA 数据存储方案的几个设计参数对预期数据寿命的影响。最后,我们通过将干燥的 DNA 样本暴露在不同水平的中子辐照下,并分析由此产生的错误分布,对我们的模型进行了实验验证。结果表明,在典型的存储条件下,粒子辐射不是 DNA 数据存储池数据丢失的主要原因。