Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
Commun Biol. 2024 Sep 14;7(1):1144. doi: 10.1038/s42003-024-06856-5.
The nucleosome including H2A.B, a mammalian-specific H2A variant, plays pivotal roles in spermatogenesis, embryogenesis, and oncogenesis, indicating unique involvement in transcriptional regulation distinct from canonical H2A nucleosomes. Despite its significance, the exact regulatory mechanism remains elusive. This study utilized solid-state nanopores to investigate DNA unwinding dynamics, applying local force between DNA and histones. Comparative analysis of canonical H2A and H2A.B nucleosomes demonstrated that the H2A.B variant required a lower voltage for complete DNA unwinding. Furthermore, synchronization analysis and molecular dynamics simulations indicate that the H2A.B variant rapidly unwinds DNA, causing the H2A-H2B dimer to dissociate from DNA immediately upon disassembly of the histone octamer. In contrast, canonical H2A nucleosomes unwind DNA at a slower rate, suggesting that the H2A-H2B dimer undergoes a state of stacking at the pore. These findings suggest that nucleosomal DNA in the H2A.B nucleosomes undergoes a DNA unwinding process involving histone octamer disassembly distinct from that of canonical H2A nucleosomes, enabling smoother unwinding. The integrated approach of MD simulations and nanopore measurements is expected to evolve into a versatile tool for studying molecular interactions, not only within nucleosomes but also through the forced dissociation of DNA-protein complexes.
核小体包括 H2A.B,一种哺乳动物特异性的 H2A 变体,在精子发生、胚胎发生和肿瘤发生中发挥关键作用,表明其在转录调控中具有独特的作用,不同于典型的 H2A 核小体。尽管其意义重大,但确切的调节机制仍不清楚。本研究利用固态纳米孔研究 DNA 解旋动力学,在 DNA 和组蛋白之间施加局部力。对典型 H2A 和 H2A.B 核小体的比较分析表明,H2A.B 变体需要更低的电压才能完成 DNA 解旋。此外,同步分析和分子动力学模拟表明,H2A.B 变体迅速解开 DNA,导致 H2A-H2B 二聚体在组蛋白八聚体解体后立即从 DNA 上解离。相比之下,典型的 H2A 核小体以较慢的速度解开 DNA,表明 H2A-H2B 二聚体在核孔中经历了一个堆叠状态。这些发现表明,H2A.B 核小体中的核小体 DNA 经历了一个涉及组蛋白八聚体解体的 DNA 解旋过程,不同于典型的 H2A 核小体,从而实现更顺畅的解旋。MD 模拟和纳米孔测量的综合方法有望发展成为研究分子相互作用的一种多功能工具,不仅在核小体内部,而且在 DNA-蛋白质复合物的强制解离中也有应用。